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Introduction

D ical and control systems

A wide range of dynamical systems from
@ classical mechanics
@ quantum mechanics
@ elasticity
@ electrical networks
@ molecular chemistry

can be modelled by invariant control systems on matrix Lie groups.
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Introduction

Applied nonlinear control

Invariant control systems with control affine dynamics (evolving on matrix
Lie groups of low dimension) arise in problems like

9 the airplane landing problem
@ the attitude problem (in spacecraft dynamics)
@ the motion planning for wheeled robots

@ the control of underactuated underwater vehicles

the control of quantum systems

()

the dynamic formation of the DNA
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Preliminaries : Invariant control systems

Left-invariant control system

A left-invariant control system (evolving on some matrix Lie group G) is
described by

g=g=(1,u), g€G, ueR’

The parametrisation map =(1,-) : R — g is a (smooth) embedding.

Control affine dynamics

For many practical control applications, (left-invariant) control systems
contain a drift term and are affine in controls :

g=8(A+wuBi+ -+ ubBy), geG, ueR"

C.C. Remsing (Rhodes University) Control and Stability on SE(2) ICAEM 2011 5 /22



Preliminaries : Invariant control systems

Admissible control

An admissible control is a map wu(-) : [0, T] — R’ that is bounded and
measurable. (“Measurable” means “almost everywhere limit of piecewise
constant maps".)

Trajectory

A trajectory for an admissible control u(-) : [0, T] — R is an absolutely
continuous curve g : [0, T| — G such that

&(t) = () =(1, u(t))

for almost every t € [0, T].
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Preliminaries : Invariant optimal control problems

A left-invariant optimal control problem consists in minimizing some
(practical) cost functional over the (controlled) trajectories of a given
left-invariant control system, subject to appropriate boundary conditions :

Left-invariant control problem (LiCP)

g=g=(1,u), geG, ueR’
g(0)=go, g(T)=g  (g0.81€0G)

-
J = %/0 L(u(t)) dt — min.

The terminal time T > 0 can be either fixed or it can be free. J
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Preliminaries : The Maximum Principle

The Pontryagin Maximum Principle is a necessary condition for optimality
expressed most naturally in the language of the geometry of the cotangent
bundle T*G of G.

V.

To a LiCP (with fixed terminal time) we associate - for each A € R and
each control parameter u € RY - a Hamiltonian function on T*G :

Hy(€) = AL(u)+¢(g=(1,u))
= AM(u)+p(E@RQ,v), £=(g.p) e TG

An optimal trajectory g(-): [0, T] — G is the projection of an integral
curve &(-) of the (time-varying) Hamiltonian vector field quj\(t).
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Preliminaries : The Maximum Principle

Theorem (Pontryagin's Maximum Principle)

Suppose the controlled trajectory (g(-),u(-)) is a solution for the LiCP.
Then there exists a curve £(-) with &(t) € TZ6)G and A <0 such that

(X, &(t)) #(0,0) (nontriviality)
£(t) = I:Ia’\(t)(f(t)) (Hamiltonian system)

Hé‘(t)(f(t)) = max H)(&(t)) = constant. (maximization)

v

An extremal curve is called normal if A = —1 (and abnormal if A = 0). ]
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Optimal control problem with quadratic cost

Theorem (Krishnaprasad, 1993)
For the LiCP (with quadratic cost)

g=g(A+wuBi+ - +uwB), ge€G, ueck’
g(0)=go, g(T)=g1 (0,81 €G)

1 T
j:i/ (clt(t) + -+ cuui(t)) dt — min (T is fixed)
0

every normal extremal is given by

1

(1) = p()(B), i=1...1

where p(-) : [0, T] — g* is an integral curve of the vector field H
corresponding to H(p) = p(A) + 3 (Cllp(Bl)2 +e Clep(Bg)z).

v
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The Euclidean group SE (2)

The Euclidean group

SE(2):{[‘1I 2] v e R, RESO(2)}

is a 3D connected matrix Lie group with associated Lie algebra

0 0 O
56(2)= x1 0 —x3| :x1,x,x3€ER
X2 X3 0
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The Lie algebra se (2)

The standard basis

If we identify se (2) with R3 by the isomorphism

0 0 0
x1 0 —x3| = x=(x1,x,x3)
x x3 0

the expression of the Lie bracket becomes

[x,y] = (xoy3 — x3y2, X3y1 — X1¥3, 0) .

v,
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The dual space se (2)*

se(2)* is isomorphic to R? via

P1 P2
0 lps| €se(2)* = p=(p1,p2,p3) € R?
0

—%P3
(so that, in these coordinates, the pairing between se (2)* and se(2)

o O O

becomes the usual scalar product in R3).

Each extremal curve p(-) in se(2)* is identified with a curve P(-) in

se(2) via
(P(t), A) = p(t)(A), Acse(2).
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The Lie-Poisson bracket

The (minus) Lie-Poisson bracket on se (2)* is given by

OF 0G
F.G}_(p) = - ,
{F,G}_(p) I,Jzk:l Pk o

— —(p1,p2,0) o (VF X VG)

(p € se(2)* is identified with the vector P = (Py, P2, P3) € R3)

Casimir function

| A\

A Casimir function of g* is a (smooth) function C on g* such that

(C,F}_=0, FeC=(g").

C = P? + P2 is a Casimir function of se (2)*.

v
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Optimal control

A left-invariant optimal control problem
We consider the LiCP

g=g (nE +whb +wnE), geSE(2), ueR? (1)
g(0)=go, &(T)=g (80,81 € SE(2)) (2)
T
J = %/ (cluf(t) + coud(t) + C3u§(t)) dt — min. (3)
0

This problem is related to the Riemannian problem on the group of (rigid)
motions of a plane.
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Optimal control : extremal curves

For the LiCS (1)-(3), the extremal control @ = (U1, Uo, U3) is given by
1 1 1
ip=—P, to=—P, U3=—P3
C1 C2 C3
where
1
P1 = —PP; (4)
3
. 1
P, = ——P1Ps (5)
a3
1 1
P; = (— — —) P1P> (6)
C2 1
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Optimal control : explicit integration

Fact

When ¢ = ¢; = ¢, the reduced Hamilton equations (4)-(6) have the

Pi(t) = ki sin (%t)

Py(t) = kq cos (%t)
P3(t) = ko

solutions

where ki = P?(0) + P3(0) and k = P5(0).

RENEILS

| A\

In the general case, these equations can be explicitly integrated by Jacobi

elliptic functions.

A\
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Stability : the energy-Casimir method

Let (M,{:,-}, H) be a (finite-dimensional) Hamilton-Poisson dynamical
system and z. € M an equilibrium state (of the Hamiltonian vector field
H). (NB : We shall be concerned only with the case M = g* .)

Algorithm

O Find a constant of motion (usually the energy H).

© Find a family C of constants of motion.

© Relate z. to a constant of motion C (usually a Casimir function) :

H + C has a critical point (at z.).

© Check : the second variation d%(H + C) (at z) is positive (or

negative) definite.

Then the equilibrium state z. is (Lyapunov) stable.

v
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Stability : the equilibrium state P!

The equilibrium states are

PM —(M,0,0), PY=(0,M,0), PM=(0,0,M)

and the origin (0,0,0).

Proposition

| \

The equilibrium state PM = (M,0,0) has the following behaviour:
@ If c1 < ¢, then it is unstable.

Q If a1 > o, then it is nonlinearly stable.

C.C. Remsing (Rhodes University) Control and Stability on SE(2) ICAEM 2011 19 / 22



Stability : the equilibrium state PY (continuation)

e

Proof (sketch)

(ii) c1 > ¢ : For the (energy-Casimir) function

1 1

1
Hy = =—P? + =—P3+ —P3 P? + P3
¥ 2C11+2C2 2_|_2C33+w(1+ 2)
we get
. (1, 1
0Hy - Pyi =0 <= ¢ (M) =—— (7)
2 C1
. /1
0%Hy, - PM = positive definite <= 1) ( 2/\/12) > 0. (8)

The function
P(x)=x(x—c — M2)

satisfies conditions (1) and (2). Hence PM is stable.

v
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Stability : the equilibrium states PY, PY etc.

Proposition
(ii) The equilibrium state P4 = (0, M,0) has the following behaviour:
@ If c1 > o, then it is unstable.

Q If c1 < o, then it is nonlinearly stable.

The equilibrium state P = (0,0, M) and the origin (0,0,0) are both
nonlinearly stable.

It this case, stronger methods (for studying nonlinear stability) are
required as the energy-Casimir method does not work.
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Final remark

Invariant optimal control problems on other interesting matrix Lie groups

(of low dimension), like
@ SU(2),U(2) and SL(2,R)
SO (3), SO (4) and SO (5)
SE(3) and SE(2) x SO (2)
SO (1,2)p, SO(1,3)p and SO (2,2)o
SE(1,1) and SE(1,2)
the Heisenberg groups Hs and Hs

©

()

(]

can also be considered.

Further work (particularly, on control and stability) is in progress. J
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