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Introduction

Dynamical and control systems

A wide range of dynamical systems from

classical mechanics

quantum mechanics

elasticity

electrical networks

molecular chemistry

can be modelled by invariant control systems on matrix Lie groups.
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Introduction

Applied nonlinear control

Invariant control systems with control affine dynamics (evolving on matrix

Lie groups of low dimension) arise in problems like

the airplane landing problem

the attitude problem (in spacecraft dynamics)

the motion planning for wheeled robots

the control of underactuated underwater vehicles

the control of quantum systems

the dynamic formation of the DNA
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Preliminaries : Invariant control systems

Left-invariant control system

A left-invariant control system (evolving on some matrix Lie group G) is

described by

ġ = g Ξ(1, u), g ∈ G, u ∈ R
ℓ.

The parametrisation map Ξ(1, ·) : Rℓ → g is a (smooth) embedding.

Control affine dynamics

For many practical control applications, (left-invariant) control systems

contain a drift term and are affine in controls :

ġ = g (A+ u1B1 + · · ·+ uℓBℓ) , g ∈ G, u ∈ R
ℓ.
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Preliminaries : Invariant control systems

Admissible control

An admissible control is a map u(·) : [0,T ] → R
ℓ that is bounded and

measurable. (“Measurable” means “almost everywhere limit of piecewise

constant maps”.)

Trajectory

A trajectory for an admissible control u(·) : [0,T ] → R
ℓ is an absolutely

continuous curve g : [0,T ] → G such that

ġ(t) = g(t) Ξ(1, u(t))

for almost every t ∈ [0,T ].
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Preliminaries : Invariant optimal control problems

A left-invariant optimal control problem consists in minimizing some

(practical) cost functional over the (controlled) trajectories of a given

left-invariant control system, subject to appropriate boundary conditions :

Left-invariant control problem (LiCP)

ġ = g Ξ(1, u), g ∈ G, u ∈ R
ℓ

g(0) = g0, g(T ) = g1 (g0, g1 ∈ G)

J =
1

2

∫ T

0
L(u(t)) dt → min.

The terminal time T > 0 can be either fixed or it can be free.
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Preliminaries : The Maximum Principle

The Pontryagin Maximum Principle is a necessary condition for optimality

expressed most naturally in the language of the geometry of the cotangent

bundle T ∗G of G.

To a LiCP (with fixed terminal time) we associate - for each λ ∈ R and

each control parameter u ∈ R
ℓ - a Hamiltonian function on T ∗G :

Hλ
u (ξ) = λ L(u) + ξ (gΞ(1, u))

= λ L(u) + p (Ξ(1, u)), ξ = (g , p) ∈ T ∗G.

An optimal trajectory ḡ(·) : [0,T ] → G is the projection of an integral

curve ξ(·) of the (time-varying) Hamiltonian vector field ~Hλ
ū(t).

C.C. Remsing (Rhodes University) Control and Stability on SE(2) ICAEM 2011 8 / 22



Preliminaries : The Maximum Principle

Theorem (Pontryagin’s Maximum Principle)

Suppose the controlled trajectory (ḡ(·), ū(·)) is a solution for the LiCP.

Then there exists a curve ξ(·) with ξ(t) ∈ T ∗

ḡ(t)G and λ ≤ 0 such that

(λ, ξ(t)) 6≡ (0, 0) (nontriviality)

ξ̇(t) = ~Hλ
ū(t)(ξ(t)) (Hamiltonian system)

Hλ
ū(t)(ξ(t)) = max

u
Hλ
u (ξ(t)) = constant. (maximization)

An extremal curve is called normal if λ = −1 (and abnormal if λ = 0).

C.C. Remsing (Rhodes University) Control and Stability on SE(2) ICAEM 2011 9 / 22



Optimal control problem with quadratic cost

Theorem (Krishnaprasad, 1993)

For the LiCP (with quadratic cost)

ġ = g (A+ u1B1 + · · ·+ uℓBℓ) , g ∈ G, u ∈ R
ℓ

g(0) = g0, g(T ) = g1 (g0, g1 ∈ G)

J =
1

2

∫ T

0

(

c1u
2
1(t) + · · ·+ cℓu

2
ℓ (t)

)

dt → min (T is fixed)

every normal extremal is given by

ūi (t) =
1

ci
p(t)(Bi ), i = 1, . . . , ℓ

where p(·) : [0,T ] → g
∗ is an integral curve of the vector field ~H

corresponding to H(p) = p(A) + 1
2

(

1
c1
p(B1)

2 + · · ·+ 1
cℓ
p(Bℓ)

2
)

.
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The Euclidean group SE (2)

The Euclidean group

SE (2) =

{[

1 0

v R

]

: v ∈ R
2×1, R ∈ SO (2)

}

is a 3D connected matrix Lie group with associated Lie algebra

se (2) =

















0 0 0

x1 0 −x3
x2 x3 0






: x1, x2, x3 ∈ R











.
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The Lie algebra se (2)

The standard basis

E1 =







0 0 0

1 0 0

0 0 0






,E2 =







0 0 0

0 0 0

1 0 0






,E3 =







0 0 0

0 0 −1

0 1 0






.

If we identify se (2) with R
3 by the isomorphism







0 0 0

x1 0 −x3
x2 x3 0






7→ x = (x1, x2, x3)

the expression of the Lie bracket becomes

[x, y] = (x2y3 − x3y2, x3y1 − x1y3, 0) .
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The dual space se (2)∗

se (2)∗ is isomorphic to R
3 via







0 p1 p2
0 0 1

2p3
0 −1

2p3 0






∈ se (2)∗ 7→ p = (p1, p2, p3) ∈ R

3

(so that, in these coordinates, the pairing between se (2)∗ and se (2)

becomes the usual scalar product in R
3).

Each extremal curve p(·) in se (2)∗ is identified with a curve P(·) in

se (2) via

〈P(t),A〉 = p(t)(A), A ∈ se (2).
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The Lie-Poisson bracket

The (minus) Lie-Poisson bracket on se (2)∗ is given by

{F ,G}
−
(p) = −

3
∑

i ,j ,k=1

ckij pk
∂F

∂pi

∂G

∂pj

= −(p1, p2, 0) • (∇F ×∇G )

( p ∈ se (2)∗ is identified with the vector P = (P1,P2,P3) ∈ R
3).

Casimir function

A Casimir function of g
∗

−
is a (smooth) function C on g

∗ such that

{C ,F}− = 0, F ∈ C∞(g∗).

C = P2
1 + P2

2 is a Casimir function of se (2)∗.

C.C. Remsing (Rhodes University) Control and Stability on SE(2) ICAEM 2011 14 / 22



Optimal control

A left-invariant optimal control problem

We consider the LiCP

ġ = g (u1E1 + u2E2 + u3E3) , g ∈ SE (2), u ∈ R
3 (1)

g(0) = g0, g(T ) = g1 (g0, g1 ∈ SE (2)) (2)

J =
1

2

∫ T

0

(

c1u
2
1(t) + c2u

2
2(t) + c3u

2
3(t)

)

dt → min. (3)

This problem is related to the Riemannian problem on the group of (rigid)

motions of a plane.
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Optimal control : extremal curves

Proposition

For the LiCS (1)-(3), the extremal control ū = (ū1, ū2, ū3) is given by

ū1 =
1

c1
P1, ū2 =

1

c2
P2, ū3 =

1

c3
P3

where

Ṗ1 =
1

c3
P2P3 (4)

Ṗ2 = −
1

c3
P1P3 (5)

Ṗ3 =

(

1

c2
−

1

c1

)

P1P2. (6)
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Optimal control : explicit integration

Fact

When c = c1 = c2, the reduced Hamilton equations (4)-(6) have the

solutions

P1(t) =
√

k1 sin

(

k2
c
t

)

P2(t) =
√

k1 cos

(

k2
c
t

)

P3(t) = k2

where k1 = P2
1 (0) + P2

2 (0) and k2 = P3(0).

Remark

In the general case, these equations can be explicitly integrated by Jacobi

elliptic functions.
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Stability : the energy-Casimir method

Let (M, {·, ·},H) be a (finite-dimensional) Hamilton-Poisson dynamical

system and ze ∈ M an equilibrium state (of the Hamiltonian vector field
~H). (NB : We shall be concerned only with the case M = g

∗

−
.)

Algorithm

1 Find a constant of motion (usually the energy H).

2 Find a family C of constants of motion.

3 Relate ze to a constant of motion C (usually a Casimir function) :

H + C has a critical point (at ze).

4 Check : the second variation δ2(H + C ) (at ze) is positive (or

negative) definite.

Then the equilibrium state ze is (Lyapunov) stable.
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Stability : the equilibrium state P
M
e1

The equilibrium states are

PM
e1 = (M, 0, 0), PM

e2 = (0,M, 0), PM
e3 = (0, 0,M)

and the origin (0, 0, 0).

Proposition

The equilibrium state PM
e1 = (M, 0, 0) has the following behaviour:

1 If c1 < c2, then it is unstable.

2 If c1 > c2, then it is nonlinearly stable.
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Stability : the equilibrium state P
M
e1 (continuation)

Proof (sketch)

(ii) c1 > c2 : For the (energy-Casimir) function

Hψ =
1

2c1
P2
1 +

1

2c2
P2
2 +

1

2c3
P2
3 + ψ

(

P2
1 + P2

2

)

we get

δHψ · PM
e1 = 0 ⇐⇒ ψ̇

(

1

2
M2

)

= −
1

c1
(7)

δ2Hψ · PM
e1 = positive definite ⇐⇒ ψ̈

(

1

2
M2

)

> 0. (8)

The function

ψ(x) = x
(

x − c1 −M2
)

satisfies conditions (1) and (2). Hence PM
e1

is stable.
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Stability : the equilibrium states P
M
e2, P

M
e3, etc.

Proposition

(ii) The equilibrium state PM
e2 = (0,M, 0) has the following behaviour:

1 If c1 > c2, then it is unstable.

2 If c1 < c2, then it is nonlinearly stable.

Proposition

The equilibrium state PM
e3 = (0, 0,M) and the origin (0, 0, 0) are both

nonlinearly stable.

Remark

It this case, stronger methods (for studying nonlinear stability) are

required as the energy-Casimir method does not work.
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Final remark

Invariant optimal control problems on other interesting matrix Lie groups

(of low dimension), like

SU (2), U (2) and SL (2,R)

SO (3), SO (4) and SO (5)

SE (3) and SE (2)× SO (2)

SO (1, 2)0, SO (1, 3)0 and SO (2, 2)0

SE (1, 1) and SE (1, 2)

the Heisenberg groups H3 and H5

can also be considered.

Further work (particularly, on control and stability) is in progress.
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