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Left-invariant control affine systems

System ¥ = (G, Z)

g==(g,u) =g (A+uBs +---+usBy), geG,uelkf
state space G
@ Lie group with Lie algebra g
dynamics =
@ family of smooth left-invariant vector fields
Z:GxR - TG, (g,u) = g=(1,u) € TyG
@ parametrization map =(1,-) is affine and injective
E(l,) : (Ul,...,Ug)I—)A—l—UlBl—i-'--—i-Ung € g.
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Trajectories

Admissible controls u(-) : [0, T] — R¢
@ piecewise continuous R‘-valued maps.
Trajectory g(-) : [0,T] = G
@ absolutely continuous curve satisfying (a.e.)
g(t) = =(g(t),u(t)).
Pair (g(-),u(-)) is called a controlled trajectory. |
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Controllability

¥ is controllable
For all go,9; € G, there exists a trajectory g(-) such that
9(0)=g0 and  g(T)=0:.

If X = (G, =) is controllable

@ G is connected.

9 A, By, ..., By generate g.

Systems are connected and have full rank.
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Example

Euclidean group SE (2)

1 O 0
X cosf —sinf| : x,y,0 R
y sinf cosé

E(l, U) = U;E» + UzE3

Parametrically

X = —Uysind y=ujcosf 6=uy

14 (2) : [Ez, E3] = El [E37 El] = E2 [El, Ez] =0 J
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Equivalence

Detached feedback equivalence (DF-equivalence)

Y =(G,Z) and ¥’ = (G/,=') are DF-equivalent if
@ there exist diffeomorphisms
¢:G— G, ¢ :RE > RY
@ such that
Tgp - =(9,u) = ='(4(9), ¢(u)), gE€G, ueR"

Establishes one-to-one correspondence between trajectories. )
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Equivalence

Commutative diagram (DF -equivalence)

0] ’
G xRE—2F G x R

EJ F

TCG———— TG/

To
The trace of ¥ is I=im=(1,-) = A+ (By,...,By). |
Proposition
Y and Y’ — 3 LGrp-isom ¢ : G — G’
DF-equivalent Tip-T=T1
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Problem statement

Now consider invariant optimal control problem on system. J

Invariant fixed time problem

O left invariant control system ¥ = (G, )

© boundary data B(go,d1,T)
@ initial state go € G
@ target state g; € G
o fixed terminal time T >0

@ affine quadratic cost
XU (U—p)"Q(u—p), u,u € Rf Q is PD.
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Problem statement

Explicitly

Minimize J = fOT x(u(t))dt over controlled trajectories of ¥
subject to boundary data.

o

Formal statement

g=9g(A4+uBi+---+uBy), geG,uck’
9(0)=g0, 9(T)=01

.
J = / (u(t) — )T Q (u(t) — p) dt — min.
0
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Example

g =g (UlEz - U2E3), ge SE (2)
g(0)=1, g(1)=0:

/1 (caus (1) + caup(t)?) dt — min
0

Parametrically

X = —Uysind y=ujcosf 6=uy
x(0) =0, x(1) =xq, ...
fol (clul(t)z = C2U2(t)2) dt — min
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Pontryagin Maximum Principle

Associate Hamiltonian function on T*G = G x g*:
HZ () = Ax(u) +p (Z(L,u)), §{=(9,p) €eT"G.

o

Maximum Principle

If (§(-),u(-)) is a solution, then there exists a curve
£(-): [0, T] = T*G, §(t) € T§yG, t€[0,T]
and X < 0, such that (for almost every t € [0, T]):

(A, €(1) # (0,0)
£(t) = |:|$‘(t)(§(t))
Ha (E(D) = max H. (£(t)) = constant.

u
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Cost-extended systems

Introduce equivalence.

Cost-extended system (X, x)

A pair, consisting of
@ asystem X
@ an admissible cost Y.

(X,x) + boundarydata = optimal control problem. |
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Cost equivalence

Cost equivalence (C-equivalence)

(X, x) and (X', x’) are C-equivalent if there exist

@ a Lie group isomorphism ¢ : G — G’
@ an affine isomorphism ¢ : Rf — RY
such that
Tg¢-=(g,u) = Z'(¢(9), p(u))

X op=ryx for some r > 0.
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Cost equivalence

Commutative diagram (C-equivalence)

GXRELG/XRZ’ RZLRE’
T T
T6—— TG R—

@ Each cost y induces a strict partial ordering on R¢
u<v < x(u) <x(v).

@ x and ' induce same strict partial ordering < y =ry/.
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DF -equivalence and C-equivalence

(Z,x) and (', %) . Y and ¥’
C-equivalent DF -equivalent
Y and ¥’ /
DF -equivalent N (X, xo¢) and (X', x)

C-equivalent for any x

wW.rt. ¢ € Aff(R)
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Reduction of cost

Proposition

Any cost-extended system (X, x) is C-equivalent to a system
(X', x"),where G' =G, ¢/ =¢, "=T,and \/'(u) = u'u.

Proof: Let x(u) = (u— )" Q (u — ). As Q is symmetric and
positive-definite, there exists (by Sylvester’s law of inertia) a
non-singular real matrix R such that RTQR = I. Let

0 RESRE u—Ru+p

= GxRE TG, Z/(1,u) = =(1, p(u))

Then

TlidG : E/(lv U) = E(la QO(U))

(xop)(u)=u"RTQRuU =u"u.
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Virtually optimal and extremal trajectories

Controlled trajectory (g(-),u(:)) over interval [0, T]. |

VOCTs and ECTs

@ Virtually optimal controlled trajectory (VOCT)
@ solution to associated optimal control problem with
B(9(0),9(T), T).
@ (Normal) extremal controlled trajectory (ECT)
o satisfies conditions of PMP (with A < 0).
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Virtually optimal and extremal trajectories

If (X,x) and (X', x) are C-equivalent (w.r.t. ¢ x ¢), then
@ (g(-),u(:)) isaVOCT < (¢o9(-),pou(:)) isaVOCT
@ (9(-),u()) isan ECT <= (¢og(:),pou(:)) isanECT.
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Proof (of first point):

@ Suppose
@ (g(-),u(-)) is a controlled trajectory of (X, )
@ (pog(-),pou()) isaVOCT of (X',x)

@ (g(-),u(-)) is nota VOCT of (X, x)
@ Exists controlled trajectory (h(-),v(-)) such that
h(0) =g(0), h(T) =g(T), and J(v()) < T(u("))-
@ (¢oh(:),pov(-)) is acontrolled trajectory of (X', x’).
@ A simple calculation shows
Jo X (@(v(t))dt < J§ X' (p(u(t)))dt.
@ Contradicts (¢ og(-),pou(-)) isaVOCT of (¥, x/).
@ Thusif (¢ og(:),pou(-)) isaVOCT, thensois (g(-),u(:)).
@ Converse follows likewise: (X', x’) and (X, x) are
C-equivalent w.r.t. ¢~ x o1
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Characterizations (for fixed system )

Proposition

(X,x) and (X', x') are C-equivalent for some x’
if and only if there
exists LGrp-isomorphism ¢ : G — G’ such that T¢I =T".

(X,x) and (X, ') are C-equivalent
if and only if
there exists ¢ € 7y such that x' =ry o for some r > 0.

-

E:{weAﬁ(Rg) . FpedAut(G), ¢-T=r }

- =(1,u) = =(1, 9(u))
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Two-input systems on the Euclidean group SE (2)

Any cost extended system (X, x) on SE(2), where

=(1,u) = uB; + u,By, x=u'"Qu
is C-equivalentto (X1, x1), where
E]_(:I.,U):UlEz—l-UzEg7 Xl(U) :UJZ_—FU%.

Proof sketch:
@ Find dAut(SE (2)).
© Show Y is DF-equivalentto ¥; = (SE(2),=1)
e (X,x) is C-equivalentto (X1,x’), X’ :u~—u' Q’u.
© Calculate Ty,.
© Find ¢ € Ty, suchthat x' o p =ry;.
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Proof 1/4: dAut (SE (2))

Lie algebra automorphisms of se (2)

X y v
R, ¢==+1
Aut(se(2)) =14 [—sy ox w X’y’\)/(’zviiz ;ACO
0 0 <
o Aut(se (2)) = dAut (SE (2)). |

R. Biggs, C.C. Remsing (Rhodes University) Cost-Extended Control Systems on Lie Groups



Introduction
Equivalence Results
Examples

Proof 2/4: ¥ is DF-equivalentto ¥,

or— <Zi3:1 aE, 2, biEi>.

@ Full rank implies a3 # 0 or bz # 0. We assume a3 # 0.

Then
r— <%El + 2B, + E3,byEy + boEp + b3E3>
— (%E1+ 2Ep + Eq, (b1 — 42)Es + (b2 — Z2)E2).
o Y= —b1+a;—:3 bz_ag%a ?Ti maps My toT.
0 0 1
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Proof 3/4: Calculate Ty,

@ Let ¢ € dAut(SE(2)) suchthat ¢ -y =T7.
@ ¢ (Ez, E3) = (Ez, E3) implies

x 0 O
=0 <X W
0O 0 ¢
W ap az| |Up C1
@ Suppose ¢ : [uz] — |:b1 bz] [uz] + [Cz] and ¢ € Tx,.

@ ¢-=1(1,u) = =1(1, ¢(u)) then implies

(sxuy +wuz)E; + (sUz)Ez =

(alul + asur + C]_)Ez + (b1u1 + bouy + C2)E3.
@ Equating coefficients yields

El:{uw[gx V!]u:x#O,weR,czil}.
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Proof 4/4: Find ¢ € Ty, suchthat y' o p =ryx;

;L a; b
9 Let Q' = [b az].
1 —b
@ No = 8 and
a; 0
/ _ T
(X 0 p1)(u) =u [0 az_gi] u.
b2 20
@ Let a’zzaz—a—1 and let o, = Oa1 X € Ts,-

@ Then (X' o (p10¢2))(u) =a,u’ u = ajyi(u).
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Two-input systems on the Heisenberg group Hs

b3 : [E2,Bs] =E1  [E3Eq]=0  [E;,Ex]=0 |

A system on Hz with trace ' = A + (B;, B,) is controllable
<= Bj, B, generates h3 (Sachkov 2009).

Example

| A\

Any controllable two-input inhomogeneous cost-extended
system on Hsz is C-equivalent to
El(l, U) = El + U1E2 + U2E3
(X1, X1,0) : 2 .2
X1,a(U) = (U1 — @) + u3.
Here a > 0 parametrizes a family of (non-equivalent) class
representatives.
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Lie-Poisson structure

(Minus) Lie-Poisson structure g*
Dual space g*, with

{F.G}(p) = —p ([dF(p),dG(p)])
Here p € g*, F,G € C>(g*).

Casimir function C € C>°(g*)
{C,F} =0 forall F € C>®(g*).

Linear Poisson morphism

@ Linear map ¢ : g* — b* such that
{F,G}oyp={Fo),Go} forall F,G € C>(g*)
@ dual maps of Lie algebra morphisms.
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Pontryagin lift

Let (X, x) be cost-extended system with:
@ =(l,uy=A+uB;+---+ubBy
® x(u)=(u-p) Qu—p).
Any ECT of (X, x) is given by
g(t) = =(g(t), u(t)), u(t) =Q BT p(t)
@ B= [ﬁl @4 is n x ¢ matrix

@ p(-):[0,T] — g* is integral curve of
H(P)=P(A+Bu)+3PBQ "B p'.
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Quadratic Hamilton-Poisson system

PSD quadratic Hamilton-Poisson system (g*,Ha q)

Hao(p) = PA+PQpPT Q is PSD n x n matrix.

- o
Linear equivalence (L-equivalence)

(9°,G) and (h*,H) are L-equivalent if
@ d linear isomorphism ¢ : g* — h*
@ GandH compatible with v, i.e.,
Tpo-G(p) = H(4(p)), P € g™
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Quadratic Hamilton-Poisson system

Following pairs are L-equivalent:
® Hpg ot and Hp g, ¢ linear Poisson automorphism
(vector fields compatible with ));
@ Hag and Hag, r >0
(vector fields compatible with dilation 6, : p ip);
@ Hpg and Hag +f(C), C Casimir, f € C*(R)
(vector fields compatible with identity map).
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Relation of equivalences

If two cost-extended systems are C-equivalent, then their
associated Hamilton-Poisson systems are L-equivalent.

Proof sketch:
@ Let ¢ :u+— Ru+ ¢o. C-equivalence implies
Ti6-A=A 1B ¢ Rp+¢o = p
Ti6-B =B'R RQIRT=1(Q)™*
® (Hiy©(T19))(p) =P (A +B'4) + 2P B'(Q) "B’
® H(sz/ ) and Hs y) o (T1¢)* L-equivalent
® Hizyo(T1¢)" and H(s ) L-equivalent.
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On the Heisenberg Lie-Poisson space (h3)*

Any homogeneous system ((h3)*,Hg) is L-equivalent to
Ho(p) =0,  Hi(p)=p3, or  Hy(p)=p3+p3.

Proof:
@ Linear Poisson automorphisms of (h3)*

. Y1228YZ21 ;i ;Z X,y,z € R
0 7, 2o Y122 # Y221
@ C(p) = p1 is a Casimir function.
ap by by
@ Let Ho(p) =pQp", Q= |by a bs].
b, bz az
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Proof (cont.)

Suppose az = 0.
@ 2 x 2 principle minors of Q: aja, — b?, —b2, and —b3.
Q is PSD; principle minors non-negative; b, = bz = 0.
@ Supposea, = 0. Then b; =0 and so
Ho(p) = a1pf = Ho(p) +a:1C(p)*.
@ Suppose a, # 0. Then

1 b

7 0 0 -2o
wl:pr—>p\lll, \Ulz 0 0 1 0 1 0

0 - 0o/lo o 1

Vaz
is a linear Poisson automorphism such that

(Hg o ¢1)(p) = (alaz %)C(p)? +p3 = & C(p)? + Ha(p).
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Proof (cont.)

Suppose az # 0.
9 Yp:prrpV¥y Wy =

is a linear Poisson auto

(Hq o v2)(p) =p

Hamilton-Poisson systems
The Pontryagin lift

n lift Examples

b
10 -2
01 -2
00 1

morphism such that

2

i b3 bobs
_ bobs _ b5 .
(o] 2 ar 2 o|P
L 0 0 as

@ Similarly, Hg is L-equivalentto H; or Hj.
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On orthogonal Lie-Poisson space so (3)*

s0(3): [EpEs]=E1 [EsEq]=E, [Ey,Er]=Es |

Example
Any homogeneous system (so(3)*,Hqg) is L-equivalent to
Ho(p) =0 or  Hi,(p)=pZ+ap; (0<a<l).

Number of 3D systems L-equivalent to relaxed free rigid body
dynamics (Tudoran, preprint)

P1 = (v3 — v2)P2P3

P2 = (v1 — v3)P1P3 PER3 v, 1,3 €R.

Ps = (v2 — v1)P1P2

@ Correspond to (so (3)*,H,), H.(p) = v1p? + 12p3 + v3p3.

o
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Conclusion

@ Introduced equivalence relation for cost-extended systems.
@ Used results in classifying subclasses of systems.

@ Outlook:
@ Study of various distinguished subclasses of systems.
@ Relation between cost-extended systems and
sub-Riemannian geometry.
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