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Problem statement

@ Left-invariant control affine systems on Lie groups.

@ Study the local geometry by introducing a natural equivalence
relation.

@ Detached feedback equivalence and £-equivalence.

@ Classify, under £-equivalence, all homogeneous systems on
SO (4).
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Left-invariant control affine systems

A left-invariant control affine system ¥ = (G,

g=9=(1,u)=9g(A+ u1By +...uBy)
where g€ G, ucRf and A, By,...,B € g.

@ The parameterization map =(1,-) : R — g is an injective affine

map (i.e., By,..., By are linearly independent).
@ The traceof X is T =im=(1,.) = A+ (By,...,By).
@ Y is homogeneousif A€ (By,...,By).

R.M. Adams, R. Biggs, C.C. Remsing (RU) Equivalence of Systems on SO (4) WSEAS CONTROL '12 5/23



Equivalences

Let X =(G,Z) and ¥/ = (G,Z).

Detached feedback equivalence

Y and X’ are (locally) detached feedback equivalent if
@ thereexist 1 N and 1 € N/, and
@ a (local) diffeomorphism ® = ¢ x ¢ : N x R — N’ x RY, ¢(1) =1,
such that
Too = (g, u) = = (#(9), ¢(u))

forall ge N and u € R’

| \

£-equivalence

Y and Y’ are £-equivalentif there exists a Lie algebra automorphism
¥ g — g such that

$-F=T.
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© The orthogonal group SO (4)
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The orthogonal group SO (4)

The orthogonal group
SO (4) = {g cGL(4,R): g'g=1, detg = 1}

is a six-dimensional, non-commutative, semisimple, compact Lie
group.

v

The Lie algebra

50(4):{AER4X4 : AT+A:0}.
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Decomposition so (4) = s0 (3) @ so (3)

Natural Basis
@ Isomorphism ¢ : s0(3) @ s0(3) — so0 (4).
@ Induces a natural basis for so (4).

E; E, Es E4 Es Es
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Automorphisms of so (4)

Group of inner automorphisms

Int (s0 (4)) = {[%1 T,Z(J)J D1, Yo € SO(3)} .

Proposition

Aut (so (4)) is generated by Int(so (4)) and the automorphism
= 01
(1 0f°
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e Equivalence
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Basic observations

Let I, T C s0(4) and ¢ € Aut(s0 (4)). Then

p-T=T <= o -t=Th

Any R € SO(3) can be expressed as a product of rotations p1(0),
p2(6) and p3(0), denoted respectively

1 0 0 cosf O sind
{O cosf sinel, [ 0 1 0 ]
0 sind cosé —sind 0 cosd
cosf —singd 0O
{sine cosf 0] .
0 0 1
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@ Let the trace of X be
= <E1 +fsE3+E4,3EQ+Es+Ee>.
@ Then
(p2(%),1)-T ={(cos T Ey —sin T E3 + v/3(sin § Ey + cos T E3)

+ E4, 3E> + E5 + E6>
= (2E1 + E4,3E> + Es + Eg) .

@ Also,
(1,p1(=%)) - (2E1 + E4,3E> + Es + Eg)
- <E1 + 1Ey Ep + §55> ~T.

e Therefore, ¥ is £-equivalent to X (with trace T). Note that
¥ = (p2(5),p1(—%)) issuch that ¢ - I+ =T+,
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One-input systems

Any one-input system is £-equivalent to a system
=1(1,u) = mE
_Qa (1,u) = u1(E1 + aEa)

forsome 0 < a < 1.

@ Let ¥ be a one-input system.

o Let Ay =32  aE and A, = Y% , aE
@ Then M = <A1>, o= <A2>, or 3= <A1 -|-A2>.
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Proof (cont.)

@ For 'y, 3¢ = (¢1,1) € Int(50 (4)) such that ¢ -y = (Ey) = F]

@ Similarly, there exists a ) = (1,42) such that ¢ - > = (Ey).

@ Hence (-1 -T2 = (Ey) =T1.

@ For I3, there exists a ¢ = (v1,1») such that ¢ - '3 = (E1 + aEy)
for some « > 0.

o If <1, then ¢ -Tg=T} .
o Ifa>1,then ¢-9-T3=(Es+aky) = (E +LE) =T} ,.
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Five-input systems

Corollary

Any five-input system is £-equivalent to a system

E? (1, U) = Uu1Es + U Es + Uz Ey

+ usEs + ugEg
Eg,a (1,u) = uEx + o Ez + u3Es
+ UsEg + Us(Ey — Ey)

forsome 0 < a < 1.

@ Any five-input system has full rank. )
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Two-input systems

Any two-input system is £-equivalent to a system

(1 u)=wuE + wkE
=5 (1,u) = w1 Ey + U Ey
_Sa (1, U) = uy Ey + to(Ez + aEs)
u) = ti(Ey + aE4 + BEs)
+ Ux(Ez + aEs)

—4 af (1

for some o >0, 8 > 0.
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Four-input systems

Corollary

Any four-input system is £-equivalent to a system

=4 (1,u) = u B3 + UpEq + UsEs + uyEg
=2 (1 ) =W Es> + UEsz + usEs + ugEg
_3a (1 ) =W Es+ uE4 + uzEg
+ ug(aEp — Es)
Ztap(1,U) = U1 Es + UoEg + U3 (BE; + oy
— Es) + us(aEr - E2)

for some o >0 and 8 > 0.
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Three-input systems

Theorem

Any three-input system is £-equivalent to a system

=% os (1,U) = U1 (Ey + a1 Es) + Up(E2 + azFs)
+ u3(E3 + BEs)
=3, (1, u) = u(Ey +vEs) + Up(Ez + vEs)
+ us(Es £ vEs)
=3, (1,u) = ut(Ey +vE4) + U2E2 + u3Es

forsome a1 > ap > |5 >0 and 0 <~y < 1. Here a1 # ap or

ag # |B].

R.M. Adams, R. Biggs, C.C. Remsing (RU) Equivalence of Systems on SO (4) WSEAS CONTROL '12



e An illustrative example
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An illustrative example

@ Any system

E,Y (1,U) = E4 + uy (’YQE1 + "YsEg + ’)’4E3)
+ Uo(v5E3 + v6E4) + Us(77Es) + us(ygEs)

is £-equivalent to the system
2(1, U) = U1Es + U E3 + U3 E4 + UsEs.

@ Here 7; > 0,i=1,...,8. The automorphism relating the traces of
these systems is given by ¢ = (¥1,1), where

73 _ 2
VS VS
Yy = V2 3
ViSRS
0 0
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An illustrative example

@ The corresponding feedback transformation ¢, defined by

¥-=y (1, u) ==(1, 9(u))

is given by
\V/E+7 0 0 0 0
QU V4 5 0 0]y 0
0 v 7 0 7
0 0 0 ~ 0

@ There exists a ¢ € Aut(SO (4)) such that Ty¢ = .

@ ¢ establishes a one-to-one correspondence between trajectories
of =, and =.
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Concluding remark

@ Obtained a list of equivalence representatives for homogeneous
systems on SO (4).

@ Attempt to obtain a classification of systems.
@ A classification can be obtained for the one-input case.

@ For the two-input and three-input cases the calculations become
quite involved.
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