On the Equivalence of Control Systems on the Orthogonal Group SO(4)

Ross M. Adams*, Rory Biggs, Claudiu C. Remsing

Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown 6140, South Africa

WSEAS International Conference on DYNAMICAL SYSTEMS and CONTROL, Porto, Portugal, July 1–3, 2012

- Introduction
- The orthogonal group SO (4)
- 3 Equivalence
- 4 An illustrative example

- Introduction
- The orthogonal group SO (4)
- 3 Equivalence
- 4 An illustrative example

Problem statement

- Left-invariant control affine systems on Lie groups.
- Study the local geometry by introducing a natural equivalence relation.
- Detached feedback equivalence and £-equivalence.
- Classify, under £-equivalence, all homogeneous systems on SO (4).

Left-invariant control affine systems

A left-invariant control affine system $\Sigma = (G, \Xi)$

$$\dot{g} = g \Xi(\mathbf{1}, u) = g(A + u_1 B_1 + \dots u_\ell B_\ell)$$

where $g \in G$, $u \in \mathbb{R}^{\ell}$ and $A, B_1, \dots, B_{\ell} \in \mathfrak{g}$.

- The parameterization map $\Xi(\mathbf{1},\cdot):\mathbb{R}^\ell\to\mathfrak{g}$ is an injective affine map (i.e., B_1,\ldots,B_ℓ are linearly independent).
- The *trace* of Σ is $\Gamma = \operatorname{im} \Xi(\mathbf{1}, \cdot) = A + \langle B_1, \dots, B_\ell \rangle$.
- Σ is homogeneous if $A \in \langle B_1, \dots, B_\ell \rangle$.

Equivalences

Let $\Sigma = (G, \Xi)$ and $\Sigma' = (G, \Xi')$.

Detached feedback equivalence

 Σ and Σ' are (locally) detached feedback equivalent if

- there exist $1 \in N$ and $1 \in N'$, and
- a (local) diffeomorphism $\Phi = \phi \times \varphi : \mathcal{N} \times \mathbb{R}^{\ell} \to \mathcal{N}' \times \mathbb{R}^{\ell}, \ \phi(\mathbf{1}) = \mathbf{1},$ such that

$$T_g\phi\cdot \Xi(g,u)=\Xi'(\phi(g),\varphi(u))$$

for all $g \in N$ and $u \in \mathbb{R}^{\ell}$

£-equivalence

 Σ and Σ' are \mathfrak{L} -equivalent if there exists a Lie algebra automorphism $\psi:\mathfrak{g}\to\mathfrak{g}$ such that

$$\psi \cdot \Gamma = \Gamma'$$
.

- Introduction
- 2 The orthogonal group SO (4)
- 3 Equivalence
- 4 An illustrative example

The orthogonal group SO(4)

The orthogonal group

$$\mathsf{SO}\left(4
ight) = \left\{g \in \mathsf{GL}\left(4, \mathbb{R}
ight) \,:\, g^ op g = \mathbf{1}, \; \mathsf{det}\, g = \mathbf{1}
ight\}$$

is a six-dimensional, non-commutative, semisimple, compact Lie group.

The Lie algebra

$$\mathfrak{so}\left(4\right) = \left\{ A \in \mathbb{R}^{4 \times 4} \, : \, A^{\top} + A = \mathbf{0} \right\}.$$

Decomposition $\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3)$

Natural Basis

- Isomorphism $\varsigma : \mathfrak{so}(3) \oplus \mathfrak{so}(3) \to \mathfrak{so}(4)$.
- Induces a natural basis for so (4).

	<i>E</i> ₁	E ₂	E ₃	E ₄	<i>E</i> ₅	E ₆
E ₁	0	E ₃	$-E_2$	0	0	0
E ₂	- <i>E</i> ₃	0	E ₁	0	0	0
<i>E</i> ₃	E ₂	- <i>E</i> ₁	0	0	0	0
E ₄	0	0	0	0	E ₆	- <i>E</i> ₅
E ₅	0	0	0	$-E_6$	0	E ₄
<i>E</i> ₆	0	0	0	E ₅	$-E_4$	0

Automorphisms of $\mathfrak{so}(4)$

Lemma

Group of inner automorphisms

$$\operatorname{Int}\left(\mathfrak{so}\left(4\right)\right)=\left\{\begin{bmatrix}\psi_{1} & 0\\ 0 & \psi_{2}\end{bmatrix}:\,\psi_{1},\,\psi_{2}\in\operatorname{SO}\left(3\right)\right\}.$$

Proposition

Aut $(\mathfrak{so}(4))$ is generated by $Int(\mathfrak{so}(4))$ and the automorphism

$$\zeta = \begin{bmatrix} 0 & \mathbf{1} \\ \mathbf{1} & 0 \end{bmatrix}.$$

- Introduction
- The orthogonal group SO (4)
- 3 Equivalence
- 4 An illustrative example

Basic observations

Proposition

Let Γ , $\widetilde{\Gamma} \subset \mathfrak{so}$ (4) and $\psi \in \operatorname{Aut}(\mathfrak{so}$ (4)). Then

$$\psi \cdot \Gamma = \widetilde{\Gamma} \quad \Longleftrightarrow \quad \psi \cdot \Gamma^{\perp} = \widetilde{\Gamma}^{\perp}.$$

Any $R \in SO(3)$ can be expressed as a product of rotations $\rho_1(\theta)$, $\rho_2(\theta)$ and $\rho_3(\theta)$, denoted respectively

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{bmatrix}, \begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{bmatrix}$$
$$\begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Example

Let the trace of Σ be

$$\Gamma = \left\langle E_1 + \sqrt{3}E_3 + E_4, 3E_2 + E_5 + E_6 \right\rangle.$$

Then

$$\begin{split} (\rho_2(\tfrac{\pi}{3}), \mathbf{1}) \cdot \Gamma &= \big\langle \cos \tfrac{\pi}{3} \, E_1 - \sin \tfrac{\pi}{3} \, E_3 + \sqrt{3} \, (\sin \tfrac{\pi}{3} \, E_1 + \cos \tfrac{\pi}{3} \, E_3) \\ &+ E_4, \, 3E_2 + E_5 + E_6 \big\rangle \\ &= \langle 2E_1 + E_4, 3E_2 + E_5 + E_6 \big\rangle \, . \end{split}$$

Also,

$$\begin{aligned} (\mathbf{1}, \rho_{1}(-\frac{\pi}{4})) \cdot \langle 2E_{1} + E_{4}, 3E_{2} + E_{5} + E_{6} \rangle \\ &= \left\langle E_{1} + \frac{1}{2}E_{4}, E_{2} + \frac{\sqrt{2}}{3}E_{5} \right\rangle = \widetilde{\Gamma}. \end{aligned}$$

• Therefore, Σ is \mathfrak{L} -equivalent to $\widetilde{\Sigma}$ (with trace $\widetilde{\Gamma}$). Note that $\psi = (\rho_2(\frac{\pi}{3}), \rho_1(-\frac{\pi}{4}))$ is such that $\psi \cdot \Gamma^{\perp} = \widetilde{\Gamma}^{\perp}$.

One-input systems

Theorem

Any one-input system is \mathfrak{L} -equivalent to a system

$$\Xi_1^1(\mathbf{1}, u) = u_1 E_1$$

 $\Xi_{2,\alpha}^1(\mathbf{1}, u) = u_1(E_1 + \alpha E_4)$

for some $0 < \alpha \le 1$.

Proof

- Let Σ be a one-input system.
- Let $A_1 = \sum_{i=1}^3 a_i E_i$ and $A_2 = \sum_{i=4}^6 a_i E_i$.
- Then $\Gamma_1 = \langle A_1 \rangle$, $\Gamma_2 = \langle A_2 \rangle$, or $\Gamma_3 = \langle A_1 + A_2 \rangle$.

Proof (cont.)

- For Γ_1 , $\exists \psi = (\psi_1, \mathbf{1}) \in \operatorname{Int}(\mathfrak{so}(4))$ such that $\psi \cdot \Gamma_1 = \langle E_1 \rangle = \Gamma_1^1$.
- Similarly, there exists a $\psi = (\mathbf{1}, \psi_2)$ such that $\psi \cdot \Gamma_2 = \langle E_4 \rangle$.
- Hence $\zeta \cdot \psi \cdot \Gamma_2 = \langle E_1 \rangle = \Gamma_1^1$.
- For Γ_3 , there exists a $\psi = (\psi_1, \psi_2)$ such that $\psi \cdot \Gamma_3 = \langle E_1 + \alpha E_4 \rangle$ for some $\alpha > 0$.
- If $\alpha \leq 1$, then $\psi \cdot \Gamma_3 = \Gamma^1_{2,\alpha}$.
- If $\alpha > 1$, then $\zeta \cdot \psi \cdot \Gamma_3 = \langle E_4 + \alpha E_1 \rangle = \langle E_1 + \frac{1}{\alpha} E_4 \rangle = \Gamma^1_{2,\frac{1}{\alpha}}$.

Five-input systems

Corollary

Any five-input system is £-equivalent to a system

$$\Xi_{1}^{5}(\mathbf{1}, u) = u_{1}E_{2} + u_{2}E_{3} + u_{3}E_{4} + u_{4}E_{5} + u_{6}E_{6}$$

$$\Xi_{2,\alpha}^{5}(\mathbf{1}, u) = u_{1}E_{2} + u_{2}E_{3} + u_{3}E_{5} + u_{4}E_{6} + u_{5}(\alpha E_{1} - E_{4})$$

for some $0 < \alpha \le 1$.

Any five-input system has full rank.

Two-input systems

Theorem

Any two-input system is £-equivalent to a system

$$\Xi_{1}^{2}(\mathbf{1}, u) = u_{1}E_{1} + u_{2}E_{2}$$

$$\Xi_{2}^{2}(\mathbf{1}, u) = u_{1}E_{1} + u_{2}E_{4}$$

$$\Xi_{3,\alpha}^{2}(\mathbf{1}, u) = u_{1}E_{1} + u_{2}(E_{2} + \alpha E_{5})$$

$$\Xi_{4,\alpha\beta}^{2}(\mathbf{1}, u) = u_{1}(E_{1} + \alpha E_{4} + \beta E_{5})$$

$$+ u_{2}(E_{2} + \alpha E_{5})$$

for some $\alpha > 0$, $\beta \geq 0$.

Four-input systems

Corollary

Any four-input system is £-equivalent to a system

$$\Xi_{1}^{4}(\mathbf{1}, u) = u_{1}E_{3} + u_{2}E_{4} + u_{3}E_{5} + u_{4}E_{6}$$

$$\Xi_{2}^{4}(\mathbf{1}, u) = u_{1}E_{2} + u_{2}E_{3} + u_{5}E_{5} + u_{6}E_{6}$$

$$\Xi_{3,\alpha}^{4}(\mathbf{1}, u) = u_{1}E_{3} + u_{2}E_{4} + u_{3}E_{6}$$

$$+ u_{4}(\alpha E_{2} - E_{5})$$

$$\Xi_{4,\alpha\beta}^{4}(\mathbf{1}, u) = u_{1}E_{3} + u_{2}E_{6} + u_{3}(\beta E_{1} + \alpha E_{2})$$

$$- E_{5}) + u_{4}(\alpha E_{1} - E_{4})$$

for some $\alpha > 0$ and $\beta \geq 0$.

Three-input systems

Theorem

Any three-input system is \mathfrak{L} -equivalent to a system

$$\Xi_{1,\alpha\beta}^{3}(\mathbf{1},u) = u_{1}(E_{1} + \alpha_{1}E_{4}) + u_{2}(E_{2} + \alpha_{2}E_{5}) + u_{3}(E_{3} + \beta E_{6})$$

$$\Xi_{2,\gamma}^{3}(\mathbf{1},u) = u_{1}(E_{1} + \gamma E_{4}) + u_{2}(E_{2} + \gamma E_{5}) + u_{3}(E_{3} \pm \gamma E_{6})$$

$$\Xi_{3,\gamma}^{3}(\mathbf{1},u) = u_{1}(E_{1} + \gamma E_{4}) + u_{2}E_{2} + u_{3}E_{6}$$

for some $\alpha_1 \ge \alpha_2 \ge |\beta| \ge 0$ and $0 \le \gamma \le 1$. Here $\alpha_1 \ne \alpha_2$ or $\alpha_2 \ne |\beta|$.

- Introduction
- The orthogonal group SO (4)
- 3 Equivalence
- An illustrative example

An illustrative example

Any system

$$\begin{split} \Xi_{\gamma}\left(\mathbf{1},u\right) &= \gamma_{1}E_{4} + u_{1}(\gamma_{2}E_{1} + \gamma_{3}E_{2} + \gamma_{4}E_{3}) \\ &+ u_{2}(\gamma_{5}E_{3} + \gamma_{6}E_{4}) + u_{3}(\gamma_{7}E_{4}) + u_{4}(\gamma_{8}E_{5}) \end{split}$$

is £-equivalent to the system

$$\widetilde{\Xi}(\mathbf{1},u) = u_1 E_2 + u_2 E_3 + u_3 E_4 + u_4 E_5.$$

• Here $\gamma_i > 0$, i = 1, ..., 8. The automorphism relating the traces of these systems is given by $\psi = (\psi_1, \mathbf{1})$, where

$$\psi_1 = \begin{bmatrix} \frac{\gamma_3}{\sqrt{\gamma_2^2 + \gamma_3^2}} & -\frac{\gamma_2}{\sqrt{\gamma_2^2 + \gamma_3^2}} & \mathbf{0} \\ \frac{\gamma_2}{\sqrt{\gamma_2^2 + \gamma_3^2}} & \frac{\gamma_3}{\sqrt{\gamma_2^2 + \gamma_3^2}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} \end{bmatrix}.$$

An illustrative example

• The corresponding feedback transformation φ , defined by

$$\psi \cdot \Xi_{\gamma} (\mathbf{1}, u) = \widetilde{\Xi} (\mathbf{1}, \varphi(u))$$

is given by

$$\varphi: u \mapsto \begin{bmatrix} \sqrt{\gamma_2^2 + \gamma_3^2} & 0 & 0 & 0 \\ \gamma_4 & \gamma_5 & 0 & 0 \\ 0 & \gamma_6 & \gamma_7 & 0 \\ 0 & 0 & 0 & \gamma_8 \end{bmatrix} u + \begin{bmatrix} 0 \\ 0 \\ \gamma_1 \\ 0 \end{bmatrix}.$$

- There exists a $\phi \in \operatorname{Aut}(SO(4))$ such that $T_1\phi = \psi$.
- ϕ establishes a one-to-one correspondence between trajectories of Ξ_{γ} and $\widetilde{\Xi}$.

Concluding remark

- Obtained a list of equivalence representatives for homogeneous systems on SO(4).
- Attempt to obtain a classification of systems.
- A classification can be obtained for the one-input case.
- For the two-input and three-input cases the calculations become quite involved.