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Problem statement

@ Left-invariant control affine systems on Lie groups.

@ Study the local geometry by introducing a natural equivalence
relation.

Equivalence relation

@ Detached feedback equivalence and £-equivalence.

@ Classify, under £-equivalence, all homogeneous systems on
SO (4).
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LiCA systems

Left-invariant control affine system ¥ = (G,
@ G is a matrix Lie group
@ the dynamics

= GxR =5 TG

is left invariant
(9,u) = =(g,u) = g=(1,u)

@ the parametrisation map
=1, ):R* > T1G=g

is affine
u—A+wuBi+...+wbBeg.

., By are linearly independent.

@ We assume By, ..
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Trace

@ The trace I' of the system ¥ is

N=im(=(1,-))Cg
=A+T°
:A+<B1,...,Bg>.

¥ is called
@ homogeneous if A e 0
@ inhomogeneous if A ¢ I'°.

@ X has full rank provided the Lie algebra generated by I' equals
the whole Lie algebra g

Lie(l') = g.

v
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Equivalences

Let X =(G,Z) and ¥/ = (G,Z).

Detached feedback equivalence

Y and Y’ are (locally) detached feedback equivalent if
@ thereexist 1 ¢ N and 1 € N/, and
@ a (local) diffeomorphism ® = ¢ x ¢ : N x R — N’ x RY, ¢(1) =1,
such that
Too = (g, u) = = (#(9), ¢(u))

forall ge N and u € Rf

£-equivalence

Y and ¥’ are £-equivalent if there exists a Lie algebra automorphism
¥ g — g such that

»-r=r.

v
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The orthogonal group SO (4)

The orthogonal group

SO (4) = {geGL(4,R) . g'g=1, detg = 1}

is a six-dimensional, connected, semisimple, compact Lie group. It is
the group of rotations of four-dimensional space.

Semisimple

A subspace / C g that satisfies the condition

[g. 1] C I

is called an ideal of g. A Lie algebra g is called semisimple if it does
not contain any nonzero abelian ideals.
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The Lie algebra so (4)

Tangent space at identity
@ Let g(-) be acurvein SO(4).
® T1SO(4) = {9(0) : 9(t) € SO(4), g(0) = 1}.
@ Then differentiating the condition g(t)"g(t) =1, at t = 0, gives

d'(0)"g(0) +g(0)"g'(0) = g'(0) + g'(0) " =0.

The Lie algebra

50(4):{A€R4X4 : AT+A=o}.

is a real six-dimensional vector space. The Lie bracket is given by the
matrix commutator.
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50 (3)

The Lie algebra
50(3):{A€R3X3:AT+A:0}
has as a basis
00 O 0O 0 1 0 -1 0
E;=|0 0 —-1|, Eo=|0 0 0|, Es=|1 0 0.
01 0 -1 00 0 0 O

This basis satisfies the commutator relations

[Eq, E2] = E3, [E2,E3] = Eq, [E3 Eq] = Eo.

As Lie algebras so (3) = (R3, x). Aut(so (3)) = SO(3). |
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Decomposition so (4) = s0 (3) @ so (3)

Natural basis
@ Isomorphism ¢ : s0(3) @ s0(3) — so0 (4).
@ Induces a natural basis for so (4).

E; E, Es E4 Es Es

0
E, | -E| ol E/| o|l o o
0
0

Es | B|-E| o ol o
E, ol o] o Es | —Es
Es 0/ 0| O|-E| 0| E
Es ol 0| o0| B |-E| ©
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Automorphisms

Definition

The inner automorphisms of a Lie algebra g, of a Lie group G, are all
those mappings of the form Adg : g — g, X — gXg~'.

Lemma

Group of inner automorphisms

Int (s0 (4)) = {[%1 122} D1, Y2 € SO(3)} .

Aut (s0 (4)) = Int (s0 (4)) x {1,}, where ¢ — {Z g] .
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e Equivalence
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Preliminaries

Let I', T C so0(4) and ¢ € Aut(so (4)). Then
p-T=T = ¢ -rt=Th

TElw) =Y alE A+ Y aE, 1 <t<6 willbe
represented as

y al ... &

5 [ 1}: .. | erSX
A2 '1 ae
ag ... a

where Aq, Ay € R3*L,

v
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Equivalence

General characterization
Aq ;A . . .
PR and X' : | /1| are £-equivalent iff there exists
Ao A,

Y € Aut(so (4)) and a K € GL(¢,R) such that

Al [A
o[l = [

Here K corresponds to a reparameterization.
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Single-input systems

Any single-input system is £-equivalent to exactly one of the systems

=15(1,u) = ui(Ey + BE4)

forsome 0 < g < 1.

Any five-input system is £-equivalent to exactly one of the systems

=3 5(1,u) = U1 Bz + U2 E3 + UsEs + UsBs + Us(Es — BEy)

for some 0 < g < 1. Note that any five-input system has full-rank.
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@ Consider a single-input system ¥ : [21} rank (A7) = 1.
2
@ There 3Ry, R € SO(3), a1 >0 and ap > 0 such that
1 az
R1A1 = 0| oy and R2A2 = 01 .
0 0
@ Therefore any system is equivalent to a system

=a(1,u) = w1 (E + aEy)

for some o > 0.
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Proof (cont.)

@ Assume «a > 0, then the systems =, and =1 are equivalent.

@ Indeed, ¢ - <E1 —l—OzE4> = <E1 = %E4>.
@ We verify these systems are all distinct. Let =5, =); be two
systems with 0 < 3,8’ < 1.

@ They are equivalent iff 3 Ry, R, € SO(3) and k € R\{0} such that

(Ry,Rx)-T =Tk or (Ry,Ro)-<-T =Tk

o v ol [

@ This gives || = |B'|, which implies g = /'.

@ The first case gives

1
0
0

Ry

v
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Proof of corollary

@ For A= 2?21 aE;, B= 2?21 biE; € so(4) consider the inner
product given by

6
A-B= Z aib;.
i=1

@ We then consider the orthogonal complement of I = (Ey + SEs).
@ Clearly the elements E,, Ez, Es, Es € L.

@ Also, E4 — SE; isclearlyin L.

@ Thus we have obtained five linearly independent vectors in I+,

@ Therefore Tt = (Ey, E3, Es, Eg, E4 — BEy).
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Two-input systems

Theorem

Any two-input homogeneous system is £-equivalent to exactly one of
the systems

_52’0 (1 =W E;+ uEy

u) =
—gg (1,u) = u1(Ey + 0E4) + o

—37 ) (1,u) = Ut (Ey + 11 Es) + Uo(Ez + 72E5)
_4 o (1 ) = Uy (E1 + oy E4) = U2(E2 + a2E5)

for some 0 < as < 1 andal2§a1,0<72§71<1 and § > 0.
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Four-input systems

Corollary

Any four-input homogeneous system is £-equivalent to exactly one of
the systems

_(40 (1,u) =uEx + pEz + uzEs + usEg

:2450 (1,u) = U1 E3 + UpEs + U3 Eg + Us(E4 — 0E4)

:(3‘}70 (1,u) = 1 Es + u2Eg + u3(E4 — v1E1) + Us(Es — 72E2)
=00 (1,u) = w1 Bs + WoBs + Us(Es — an Ey) + Us(Es — a2bp)

for some 0 < ap < 1 and <a1,0<72<'y1<1 and 6 > 0.
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Three-input systems

Theorem

Any three-input homogeneous system is £-equivalent to exactly one of
the systems

Eﬁ?;f) (1,u) = u1(Eq + BEs) + U2E2 + u3Es

=00 (1,u) = ui(Er + 61E4) + Ua(Ez + 62E5) + us(Es — 83Es)
ES",O) (1,u) = u1(E1 + v1E4) + U2(E2 + v2Es) + us(Esz + 3Es)
=00 (1,0) = ur(Er + 01E4) + Up(Ez + Es) + Us(E3 + 02E)

where 0 < 3 <1and § >dp>9d3>0,0<v3 <7 <1 and vy <4,
and 0 < as < 1 andaizgm.
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@ Consider a system X : [A ] Ay, A € R3%3,

1
Az
@ Assume rank(A¢) = 3.

@ Clearly

4l

@ Thus consider systems of the form X : Uﬂ
2

@ Two systems X, %’ are equivalent if there exists Ry, R> € SO(3)
and K € GL(3,R) such that

[R?l\z] - [ASK] '
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Proof (cont.)

@ Choosing K = Ry implies
RoAR; ! = Ab.
@ From results in Linear Algebra there 3R;, R> € SO(3) such that
» = diag(ay, az, a3)

where aq > ao > |0z3| > 0.
@ Also, if 3Ry, R> € SO(3) such that

Ridiag(ay, ag, ag) Rz = diag(at, ap, a3)

(satisfying the above assumptions) it follows that «; = o/,
i=1,2,3.
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Proof (cont.)

@ Two systems

l3 l3 ]
Y. and Y| ..
[dlag(m , o, 043)] [dlalg(o/1 , 0l 0lg)

are also equivalent if there 3Ry, R, € SO(3) and K € GL(3,R)
such that

Ridiag(at, az, a3)| _ K
Ro - |diag(c), ab, ag)K| "

@ This leads to the equation

1 1 1 1
dlag(aﬁ o’ 073) R, " diag(c}, ap, o) Ry

@ This leads to further restrictions on the coefficients a1, as, as.

v
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Equivalence table

Type Equivalence representatives
1<, <a, 0<B<H,
O0<yg<m<tandy <y, 0<d3 <0 <0y
(1,0) [1 0035 00]
0 0 0 0 -
1000 O
0100 O
(5.0) 000 O0 1
0010 O
| 0001 0 |
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Equivalence table

1 0 1 0 1 0 1 0
00 0 1 0 1 0 1
00 00 0 0 0 0
(2.0 0 1 5 0 v 0 a; 0
00 00 0 73 0 ap
' oo|] ool [o o] [0 o]
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e Concluding remarks
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Concluding remarks

@ Obtained a list of equivalence representatives for homogeneous
systems on SO (4).

@ Attempt to extend to a global classification of systems.

@ Restricting these equivalence representatives to full-rank systems
leads to a classification of controllable systems on SO(4).

Further work
@ stability,

@ integration.
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