Control Systems on the Orthogonal Group SO (4)

Ross M. Adams

Mathematics Seminar September 26, 2012

Outline

- Introduction
- The orthogonal group SO (4)
- 3 Equivalence
- Concluding remarks

Outline

- Introduction
- 2 The orthogonal group SO (4)
- 3 Equivalence
- Concluding remarks

Problem statement

Objects

- Left-invariant control affine systems on Lie groups.
- Study the local geometry by introducing a natural equivalence relation.

Equivalence relation

- Detached feedback equivalence and £-equivalence.
- Classify, under L-equivalence, all homogeneous systems on SO (4).

LiCA systems

Left-invariant control affine system $\Sigma = (G, \Xi)$

- G is a matrix Lie group
- the dynamics

$$\Xi:G\times\mathbb{R}^\ell\to TG$$

is left invariant

$$(g,u)\mapsto \Xi(g,u)=g\Xi(\mathbf{1},u)$$

the parametrisation map

$$\Xi(\mathbf{1},\cdot):\mathbb{R}^\ell\to T_\mathbf{1}G=\mathfrak{g}$$

is affine

$$u \mapsto A + u_1 B_1 + \ldots + u_\ell B_\ell \in \mathfrak{g}.$$

• We assume B_1, \ldots, B_ℓ are linearly independent.

Trace

• The trace Γ of the system Σ is

$$\begin{split} \Gamma &= \operatorname{im}(\Xi(\mathbf{1}, \cdot\,)) \subset \mathfrak{g} \\ &= \textit{A} + \Gamma^0 \\ &= \textit{A} + \left\langle \textit{B}_1, \dots, \textit{B}_\ell \right\rangle. \end{split}$$

Σ is called

- homogeneous if $A \in \Gamma^0$
- inhomogeneous if $A \notin \Gamma^0$.
- Σ has full rank provided the Lie algebra generated by Γ equals the whole Lie algebra $\mathfrak g$

$$Lie(\Gamma) = \mathfrak{g}.$$

Equivalences

Let $\Sigma = (G, \Xi)$ and $\Sigma' = (G, \Xi')$.

Detached feedback equivalence

 Σ and Σ' are (locally) detached feedback equivalent if

- there exist $1 \in N$ and $1 \in N'$, and
- a (local) diffeomorphism $\Phi = \phi \times \varphi : \mathcal{N} \times \mathbb{R}^{\ell} \to \mathcal{N}' \times \mathbb{R}^{\ell}, \ \phi(\mathbf{1}) = \mathbf{1},$ such that

$$T_g\phi\cdot \Xi(g,u)=\Xi'\left(\phi(g),\varphi(u)\right)$$

for all $g \in N$ and $u \in \mathbb{R}^{\ell}$

£-equivalence

 Σ and Σ' are \mathfrak{L} -equivalent if there exists a Lie algebra automorphism $\psi:\mathfrak{g}\to\mathfrak{g}$ such that

$$\psi \cdot \Gamma = \Gamma'$$
.

Outline

- Introduction
- 2 The orthogonal group SO (4)
- 3 Equivalence
- Concluding remarks

The orthogonal group SO(4)

The orthogonal group

$$\mathsf{SO}\left(4
ight) = \left\{g \in \mathsf{GL}\left(4, \mathbb{R}
ight) \,:\, g^{ op}g = \mathbf{1}, \; \mathsf{det}\, g = \mathbf{1}
ight\}$$

is a six-dimensional, connected, semisimple, compact Lie group. It is the group of rotations of four-dimensional space.

Semisimple

A subspace $I \subset \mathfrak{g}$ that satisfies the condition

$$[\mathfrak{g},I]\subset I$$

is called an ideal of \mathfrak{g} . A Lie algebra \mathfrak{g} is called semisimple if it does not contain any nonzero abelian ideals.

The Lie algebra $\mathfrak{so}(4)$

Tangent space at identity

- Let $g(\cdot)$ be a curve in SO(4).
- $T_1SO(4) = {\dot{g}(0) : g(t) \in SO(4), g(0) = 1}.$
- Then differentiating the condition $g(t)^{\top}g(t) = 1$, at t = 0, gives

$$g'(0)^{\top}g(0) + g(0)^{\top}g'(0) = g'(0) + g'(0)^{\top} = 0.$$

The Lie algebra

$$\mathfrak{so}\left(4\right) = \left\{A \in \mathbb{R}^{4 \times 4} : A^{\top} + A = \mathbf{0}\right\}.$$

is a real six-dimensional vector space. The Lie bracket is given by the matrix commutator.

The Lie algebra

$$\mathfrak{so}\left(3\right) = \left\{A \in \mathbb{R}^{3 \times 3} : A^{\top} + A = \mathbf{0}\right\}$$

has as a basis

$$E_1 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}, \quad E_2 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix}, \quad E_3 = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

This basis satisfies the commutator relations

$$[E_1, E_2] = E_3, \quad [E_2, E_3] = E_1, \quad [E_3, E_1] = E_2.$$

As Lie algebras $\mathfrak{so}(3) \cong (\mathbb{R}^3, \times)$. Aut $(\mathfrak{so}(3)) = SO(3)$.

Decomposition $\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3)$

Natural basis

- Isomorphism $\varsigma : \mathfrak{so}(3) \oplus \mathfrak{so}(3) \to \mathfrak{so}(4)$.
- Induces a natural basis for so (4).

	E ₁	E ₂	E ₃	E_4	<i>E</i> ₅	E ₆
E ₁	0	E ₃	$-E_2$	0	0	0
E ₂	- <i>E</i> ₃	0	E ₁	0	0	0
<i>E</i> ₃	E ₂	- <i>E</i> ₁	0	0	0	0
E ₄	0	0	0	0	E ₆	- <i>E</i> ₅
E ₅	0	0	0	- <i>E</i> ₆	0	E ₄
<i>E</i> ₆	0	0	0	<i>E</i> ₅	-E ₄	0

Automorphisms

Definition

The inner automorphisms of a Lie algebra \mathfrak{g} , of a Lie group G, are all those mappings of the form $\mathrm{Ad}_g:\mathfrak{g}\to\mathfrak{g},\,X\mapsto gXg^{-1}.$

Lemma

Group of inner automorphisms

$$\operatorname{Int}\left(\mathfrak{so}\left(4\right)\right)=\left\{ \begin{bmatrix} \psi_{1} & \mathbf{0} \\ \mathbf{0} & \psi_{2} \end{bmatrix} : \ \psi_{1}, \ \psi_{2} \in \operatorname{SO}\left(3\right) \right\}.$$

Proposition

$$\mathsf{Aut}\left(\mathfrak{so}\left(4\right)\right)=\mathsf{Int}\left(\mathfrak{so}\left(4\right)\right)\times\left\{\mathbf{1},\varsigma\right\},\;\mathsf{where}\;\varsigma=\begin{bmatrix}0&\mathit{I}_{3}\\\mathit{I}_{3}&0\end{bmatrix}.$$

Outline

- Introduction
- 2 The orthogonal group SO (4)
- 3 Equivalence
- Concluding remarks

Preliminaries

Proposition

Let Γ , $\widetilde{\Gamma} \subset \mathfrak{so}$ (4) and $\psi \in \operatorname{Aut}(\mathfrak{so}$ (4)). Then

$$\psi \cdot \Gamma = \widetilde{\Gamma} \quad \Longleftrightarrow \quad \psi \cdot \Gamma^{\perp} = \widetilde{\Gamma}^{\perp}.$$

Notation

 $\Sigma: \Xi(\mathbf{1},u)=u_1\sum_{i=1}^6 a_i^1 E_i + \cdots + u_\ell \sum_{i=1}^6 a_i^\ell E_i, \ 1\leq \ell \leq 6$ will be represented as

$$\Sigma: egin{bmatrix} A_1 \ A_2 \end{bmatrix} = egin{bmatrix} a_1^1 & \dots & a_1^\ell \ dots & \ddots & dots \ a_6^1 & \dots & a_6^\ell \end{bmatrix} \in \mathbb{R}^{6 imes \ell}$$

where $A_1, A_2 \in \mathbb{R}^{3 \times \ell}$.

Equivalence

General characterization

 $\Sigma: \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$ and $\Sigma': \begin{bmatrix} A'_1 \\ A'_2 \end{bmatrix}$ are \mathfrak{L} -equivalent iff there exists $\psi \in \operatorname{Aut}(\mathfrak{so}(4))$ and a $K \in \operatorname{GL}(\ell,\mathbb{R})$ such that

$$\psi \cdot \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} = \begin{bmatrix} A'_1 \\ A'_2 \end{bmatrix} K.$$

Here K corresponds to a reparameterization.

Single-input systems

Theorem

Any single-input system is \mathfrak{L} -equivalent to exactly one of the systems

$$\Xi_{1,\beta}^{1}(\mathbf{1},u)=u_{1}(E_{1}+\beta E_{4})$$

for some $0 \le \beta \le 1$.

Corollary

Any five-input system is $\,\mathfrak{L}\text{-equivalent}$ to exactly one of the systems

$$\Xi_{1,\beta}^{5}(\mathbf{1},u)=u_{1}E_{2}+u_{2}E_{3}+u_{3}E_{5}+u_{4}E_{6}+u_{5}(E_{4}-\beta E_{1})$$

for some $0 \le \beta \le 1$. Note that any five-input system has full-rank.

Proof

- Consider a single-input system $\Sigma : \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$, rank $(A_1) = 1$.
- There $\exists R_1, R_2 \in SO(3), \ \alpha_1 > 0$ and $\alpha_2 \ge 0$ such that

$$R_1A_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \alpha_1$$
 and $R_2A_2 = \begin{bmatrix} \frac{\alpha_2}{\alpha_1} \\ 0 \\ 0 \end{bmatrix} \alpha_1$.

Therefore any system is equivalent to a system

$$\Xi_{\alpha}(\mathbf{1},u)=u_{1}(E_{1}+\alpha E_{4})$$

for some $\alpha > 0$.

Proof (cont.)

- Assume $\alpha > 0$, then the systems Ξ_{α} and $\Xi_{\frac{1}{\alpha}}$ are equivalent.
- Indeed, $\varsigma \cdot \langle E_1 + \alpha E_4 \rangle = \langle E_1 + \frac{1}{\alpha} E_4 \rangle$.
- We verify these systems are all distinct. Let $\Xi_{\beta}, \Xi'_{\beta}$ be two systems with $0 \le \beta, \beta' \le 1$.
- They are equivalent iff $\exists R_1, R_2 \in SO(3)$ and $k \in \mathbb{R} \setminus \{0\}$ such that

$$(R_1, R_2) \cdot \Gamma = \Gamma' k$$
 or $(R_1, R_2) \cdot \varsigma \cdot \Gamma = \Gamma' k$.

The first case gives

$$R_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} k$$
 and $R_2 \begin{bmatrix} \beta \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} \beta' \\ 0 \\ 0 \end{bmatrix} k$.

• This gives $|\beta| = |\beta'|$, which implies $\beta = \beta'$.

Proof of corollary

• For $A = \sum_{i=1}^6 a_i E_i$, $B = \sum_{i=1}^6 b_i E_i \in \mathfrak{so}(4)$ consider the inner product given by

$$A\cdot B=\sum_{i=1}^6 a_ib_i.$$

- We then consider the orthogonal complement of $\Gamma = \langle E_1 + \beta E_4 \rangle$.
- Clearly the elements $E_2, E_3, E_5, E_6 \in \Gamma^{\perp}$.
- Also, $E_4 \beta E_1$ is clearly in Γ^{\perp} .
- Thus we have obtained five linearly independent vectors in Γ^{\perp} .
- Therefore $\Gamma^{\perp} = \langle E_2, E_3, E_5, E_6, E_4 \beta E_1 \rangle$.

Two-input systems

Theorem

Any two-input homogeneous system is \mathfrak{L} -equivalent to exactly one of the systems

$$\Xi_{1}^{(2,0)}(\mathbf{1},u) = u_{1}E_{1} + u_{2}E_{4}$$

$$\Xi_{2,\delta}^{(2,0)}(\mathbf{1},u) = u_{1}(E_{1} + \delta E_{4}) + u_{2}E_{2}$$

$$\Xi_{3,\gamma}^{(2,0)}(\mathbf{1},u) = u_{1}(E_{1} + \gamma_{1}E_{4}) + u_{2}(E_{2} + \gamma_{2}E_{5})$$

$$\Xi_{4,\alpha}^{(2,0)}(\mathbf{1},u) = u_{1}(E_{1} + \alpha_{1}E_{4}) + u_{2}(E_{2} + \alpha_{2}E_{5})$$

for some $0 < \alpha_2 \le 1$ and $\frac{1}{\alpha_2} \le \alpha_1$, $0 < \gamma_2 \le \gamma_1 < 1$ and $\delta \ge 0$.

Four-input systems

Corollary

Any four-input homogeneous system is \mathfrak{L} -equivalent to exactly one of the systems

$$\begin{split} &\Xi_{1}^{(4,0)}\left(\mathbf{1},u\right)=u_{1}E_{2}+u_{2}E_{3}+u_{3}E_{5}+u_{4}E_{6}\\ &\Xi_{2,\delta}^{(4,0)}\left(\mathbf{1},u\right)=u_{1}E_{3}+u_{2}E_{5}+u_{3}E_{6}+u_{4}(E_{4}-\delta E_{1})\\ &\Xi_{3,\gamma}^{(4,0)}\left(\mathbf{1},u\right)=u_{1}E_{3}+u_{2}E_{6}+u_{3}(E_{4}-\gamma_{1}E_{1})+u_{4}(E_{5}-\gamma_{2}E_{2})\\ &\Xi_{4,\alpha}^{(4,0)}\left(\mathbf{1},u\right)=u_{1}E_{3}+u_{2}E_{6}+u_{3}(E_{4}-\alpha_{1}E_{1})+u_{4}(E_{5}-\alpha_{2}E_{2}) \end{split}$$

for some $0 < \alpha_2 \le 1$ and $\frac{1}{\alpha_2} \le \alpha_1$, $0 < \gamma_2 \le \gamma_1 < 1$ and $\delta \ge 0$.

Three-input systems

Theorem

Any three-input homogeneous system is \mathfrak{L} -equivalent to exactly one of the systems

$$\begin{split} &\Xi_{1,\beta}^{(3,0)}\left(\mathbf{1},u\right)=u_{1}(E_{1}+\beta E_{4})+u_{2}E_{2}+u_{3}E_{6}\\ &\Xi_{2,\delta}^{(3,0)}\left(\mathbf{1},u\right)=u_{1}(E_{1}+\delta_{1}E_{4})+u_{2}(E_{2}+\delta_{2}E_{5})+u_{3}(E_{3}-\delta_{3}E_{6})\\ &\Xi_{3,\gamma}^{(3,0)}\left(\mathbf{1},u\right)=u_{1}(E_{1}+\gamma_{1}E_{4})+u_{2}(E_{2}+\gamma_{2}E_{5})+u_{3}(E_{3}+\gamma_{3}E_{6})\\ &\Xi_{4,\alpha}^{(3,0)}\left(\mathbf{1},u\right)=u_{1}(E_{1}+\alpha_{1}E_{4})+u_{2}(E_{2}+E_{5})+u_{3}(E_{3}+\alpha_{2}E_{6}) \end{split}$$

where $0 \le \beta \le 1$ and $\delta_1 \ge \delta_2 \ge \delta_3 \ge 0$, $0 < \gamma_3 \le \gamma_2 < 1$ and $\gamma_2 \le \gamma_1$, and $0 < \alpha_2 \le 1$ and $\frac{1}{\alpha_2} \le \alpha_1$.

Proof

- Consider a system $\Sigma : \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}, \ A_1, A_2 \in \mathbb{R}^{3 \times 3}.$
- Assume $rank(A_1) = 3$.
- Clearly

$$\begin{bmatrix} A_1 \\ A_2 \end{bmatrix} = \begin{bmatrix} I_3 \\ A_2 \end{bmatrix} A_1^{-1}.$$

- Thus consider systems of the form $\Sigma : \begin{bmatrix} I_3 \\ A_2 \end{bmatrix}$.
- Two systems Σ, Σ' are equivalent if there exists $R_1, R_2 \in SO(3)$ and $K \in GL(3, \mathbb{R})$ such that

$$\begin{bmatrix} R_1 \\ R_2 A_2 \end{bmatrix} = \begin{bmatrix} K \\ A'_2 K \end{bmatrix}.$$

Proof (cont.)

• Choosing $K = R_1$ implies

$$R_2A_2R_1^{-1}=A_2'.$$

• From results in Linear Algebra there $\exists R_1, R_2 \in SO(3)$ such that

$$A_2' = \operatorname{diag}(\alpha_1, \alpha_2, \alpha_3)$$

where $\alpha_1 \geq \alpha_2 \geq |\alpha_3| \geq 0$.

• Also, if $\exists R_1, R_2 \in SO(3)$ such that

$$R_1 \operatorname{diag}(\alpha_1, \alpha_2, \alpha_3) R_2 = \operatorname{diag}(\alpha'_1, \alpha'_2, \alpha'_3)$$

(satisfying the above assumptions) it follows that $\alpha_i = \alpha'_i$, i = 1, 2, 3.

Proof (cont.)

Two systems

$$\Sigma: \begin{bmatrix} \textit{I}_3 \\ \operatorname{diag}(\alpha_1, \alpha_2, \alpha_3) \end{bmatrix} \quad \text{and} \quad \Sigma': \begin{bmatrix} \textit{I}_3 \\ \operatorname{diag}(\alpha_1', \alpha_2', \alpha_3') \end{bmatrix}$$

are also equivalent if there $\exists R_1, R_2 \in SO(3)$ and $K \in GL(3, \mathbb{R})$ such that

$$\begin{bmatrix} R_1 \operatorname{diag}(\alpha_1, \alpha_2, \alpha_3) \\ R_2 \end{bmatrix} = \begin{bmatrix} K \\ \operatorname{diag}(\alpha_1', \alpha_2', \alpha_3') K \end{bmatrix}.$$

This leads to the equation

$$\operatorname{diag}(\frac{1}{\alpha_1}, \frac{1}{\alpha_2}, \frac{1}{\alpha_3}) = R_2^{-1} \operatorname{diag}(\alpha_1', \alpha_2', \alpha_3') R_1$$

• This leads to further restrictions on the coefficients $\alpha_1, \alpha_2, \alpha_3$.

Туре	Equivalence representatives $1 \leq \frac{1}{\alpha_2} \leq \alpha_1, 0 \leq \beta \leq 1, \\ 0 \leq \gamma_3 \leq \gamma_2 < 1 \text{ and } \gamma_2 \leq \gamma_1, 0 \leq \delta_3 \leq \delta_2 \leq \delta_1$							
(1,0)	$ \begin{bmatrix} 1 & 0 & 0 & \boldsymbol{\beta} & 0 & 0 \end{bmatrix}^{\top} $							
(5,0)	$\left[\begin{array}{ccccc} 0 & 0 & 0 & 0 & -\beta \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{array}\right]$							

(2,0)	[10]	[10]	[10]	[10]
	0 0	0 1	0 1	0 1
	0 0	0 0	0 0	0 0
	0 1	δ_1 0	γ_2 0	α_1 0
	0 0	0 0	0 γ_3	0 α2
	0 0	0 0	0 0	0 0

Outline

- Introduction
- 2 The orthogonal group SO (4)
- 3 Equivalence
- Concluding remarks

Concluding remarks

- Obtained a list of equivalence representatives for homogeneous systems on SO(4).
- Attempt to extend to a global classification of systems.
- Restricting these equivalence representatives to full-rank systems leads to a classification of controllable systems on SO(4).

Further work

- stability,
- integration.