Quadratic Hamilton-Poisson Systems on $\mathfrak{se}(1,1)_{-}^{*}$

Dennis Barrett

Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown 6140

Postgraduate Seminar in Mathematics, NMMU, Port Elizabeth, 5-6 October 2012

Outline

- Hamilton-Poisson formalism
- 2 The semi-Euclidean Lie algebra
- 3 Classification
- 4 Integration

Introduction

Context

Study a class of Hamilton-Poisson systems relating to optimal control problems on Lie groups.

Objects

quadratic Hamilton-Poisson systems on the dual spaces of Lie algebras

Equivalence

equivalence under linear isomorphisms

Problem

- classify Hamilton-Poisson systems under linear equivalence
- find integral curves of class representatives

Lie-Poisson structures

Poisson bracket $\{\cdot,\cdot\}$ on \mathfrak{g}^*

Skew-symmetric, bilinear map $C^{\infty}(\mathfrak{g}^*) \times C^{\infty}(\mathfrak{g}^*) \to C^{\infty}(\mathfrak{g}^*)$ satisfying:

- Jacobi identity
- $\{\cdot, F\}$ is a derivation, $\forall F \in C^{\infty}(\mathfrak{g}^*)$

(Minus) Lie-Poisson space
$$\mathfrak{g}_-^* = (\mathfrak{g}^*, \{\cdot, \cdot\})$$

$$\{F,G\}(p) = -p\left(\left[\mathbf{d}F(p),\mathbf{d}G(p)\right]\right)$$

Linear Poisson automorphisms

Linear isomorphisms $\Psi:\mathfrak{g}^* \to \mathfrak{g}^*$ that preserve the Poisson bracket:

$$\{F,G\} \circ \Psi = \{F \circ \Psi, G \circ \Psi\}, \quad \forall F,G \in C^{\infty}(\mathfrak{g}^*).$$

Hamiltonian formalism

Hamiltonian vector fields

For every Hamiltonian function $H \in C^{\infty}(\mathfrak{g}^*)$ there is a unique vector field $\vec{H} \in \text{Vec}(\mathfrak{g}^*)$ such that

$$\vec{H}[F] = \{F, H\}, \qquad \forall F \in C^{\infty}(\mathfrak{g}^*).$$

Equations of motion on \mathfrak{g}_{-}^*

Integral curves $p(\cdot)$ of \vec{H} satisfy $\dot{p}(t) = \vec{H}(p(t))$, or

$$\dot{p}_i = -p\left(\left[E_i, \mathbf{d}H(p)\right]\right).$$

Constants of Motion

Conservation of energy

Let $\Phi_t : \mathfrak{g}^* \to \mathfrak{g}^*$ denote the flow of \vec{H} :

$$\Phi_0 = \operatorname{Id} \qquad \operatorname{and} \qquad rac{d}{dt} \Phi_t(p) = ec{H}(\Phi_t(p)), \qquad orall p \in \mathfrak{g}^*.$$

Then

$$H \circ \Phi_t = H$$
.

Casimir functions

$$\{C,F\}=0, \qquad \forall F\in C^{\infty}(\mathfrak{g}^*).$$

Integral curves of \vec{H} evolve on the intersection of the surfaces

$$H(p) = \text{const.}$$
 and $C(p) = \text{const.}$

Quadratic Hamilton-Poisson systems

Quadratic HP systems $(\mathfrak{g}_{-}^*, H_{A,Q})$

The Hamiltonian $H_{A,Q}$ is given by

$$H_{A,Q}(p) = pA + \frac{1}{2}pQp^{\top} \qquad (A \in \mathfrak{g}).$$

Restriction

- homogeneous systems: $H_Q(p) = \frac{1}{2}pQp^{\top}$
- Q is positive semi-definite

Equivalence of systems

Linear equivalence (*L*-equivalence)

HP systems (\mathfrak{g}_{-}^*, H) and (\mathfrak{g}_{-}^*, G) are L-equivalent if there exists a linear isomorphism $\Psi: \mathfrak{g}^* \to \mathfrak{g}^*$ such that

$$\Psi \circ \vec{H} \circ \Psi^{-1} = \vec{G}.$$

Sufficient conditions

 H_Q is L-equivalent to

- $H_Q \circ \Psi$, for any linear Poisson automorphism $\Psi : \mathfrak{g}^* \to \mathfrak{g}^*$
- $H_Q + f(C)$, where C is a Casimir and $f : \mathbb{R} \to \mathbb{R}$
- H_{rQ} for any r > 0

The semi-Euclidean Lie algebra

$\mathfrak{se}(1,1)$

$$\mathfrak{se}(1,1) = \left\{ egin{bmatrix} 0 & 0 & 0 \ x & 0 & heta \ y & heta & 0 \end{bmatrix} : x,y, heta \in \mathbb{R}
ight\}$$

Standard Basis

$$E_1 = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad E_2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \qquad E_3 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Commutators

$$[E_2, E_3] = -E_1$$
 $[E_3, E_1] = E_2$ $[E_1, E_2] = 0$

Hamilton-Poisson systems on $\mathfrak{se}(1,1)^*$

Equations of motion

$$\begin{cases} \dot{p}_1 = \frac{\partial H}{\partial p_3} p_2 \\ \\ \dot{p}_2 = \frac{\partial H}{\partial p_3} p_1 \\ \\ \dot{p}_3 = -\frac{\partial H}{\partial p_1} p_2 - \frac{\partial H}{\partial p_2} p_1 \end{cases}$$

Casimir function

The function $C:(p_1,p_2,p_3)\mapsto p_1^2-p_2^2$ is a Casimir on $\mathfrak{se}(1,1)_-^*$.

Classification of HP systems on $\mathfrak{se}(1,1)_{-}^{*}$

Proposition

Any HP system $H_Q(p) = \frac{1}{2}pQp^{\top}$ on $\mathfrak{se}(1,1)_-^*$ is L-equivalent to exactly one of the following systems:

$$H_0(p) = 0$$
 $H_1(p) = \frac{1}{2}p_1^2$ $H_2(p) = \frac{1}{2}(p_1 + p_2)^2$
 $H_3(p) = \frac{1}{2}p_3^2$ $H_4(p) = \frac{1}{2}(p_1^2 + p_3^2)$ $H_5(p) = \frac{1}{2}[(p_1 + p_2)^2 + p_3^2]$

Method of proof

- simplify representatives using sufficient conditions for L-equivalence
- result: collection of potential representatives
- confirm that representatives are not equivalent

Integration

Integral curves

- \bullet \vec{H}_1 linear
- \vec{H}_2 linear
- \vec{H}_3 hyperbolas
- \vec{H}_4 periodic (integrable in terms of Jacobi elliptic functions)
- \vec{H}_5 integrable in terms of elementary functions

Typical cases for \vec{H}_5

Integral curves of \vec{H}_5

Equations of motion for $H_5(p)=rac{1}{2}igl[(p_1+p_2)^2+p_3^2igr]$

$$\begin{cases} \dot{p}_1 = p_2 p_3 \\ \dot{p}_2 = p_1 p_3 \\ \dot{p}_3 = -(p_1 + p_2)^2 \end{cases}$$

Sketch of integration process

- Let $\bar{p}(\cdot):(-arepsilon,arepsilon) o\mathfrak{se}(1,1)^*$ be an integral curve of \vec{H}_5
- Let $h_0 = H_5(\bar{p}(0))$ and $c_0 = C(\bar{p}(0))$
- We consider the case $c_0 > 0$

Case $c_0 > 0$

Sketch of integration process, cont'd

• Since $2h_0 = (\bar{p}_1 + \bar{p}_2)^2 + \bar{p}_3^2$ and $\dot{\bar{p}}_3 = -(\bar{p}_1 + \bar{p}_2)^2$, we get the ODE

$$rac{d}{dt}ar{p}_3=ar{p}_3^2-2h_0 \qquad \Rightarrow \qquad ar{p}_3(t)=-\sqrt{2h_0} anh\left(\sqrt{2h_0}\,t
ight).$$

• Differentiate $\bar{p}_3(t)$ to get

$$ar{p}_1 + ar{p}_2 = \sigma \sqrt{2h_0} \operatorname{sech}\left(\sqrt{2h_0} t\right), \qquad \sigma \in \{-1, 1\}.$$

• Since $(\bar{p}_1 + \bar{p}_2)(\bar{p}_1 - \bar{p}_2) = c_0$, we have

$$ar{p}_1 - ar{p}_2 = rac{\sigma c_0}{\sqrt{2h_0}}\cosh\left(\sqrt{2h_0}\ t
ight).$$

Case $c_0 > 0$, cont'd

Sketch of integration process, cont'd

• Now we solve for $\bar{p}_1(\cdot)$ and $\bar{p}_2(\cdot)$:

$$\begin{split} \bar{p}_1(t) &= \frac{\sigma}{2\sqrt{2h_0}} \left[2h_0 \operatorname{sech} \left(\sqrt{2h_0} \ t \right) + c_0 \operatorname{cosh} \left(\sqrt{2h_0} \ t \right) \right], \\ \bar{p}_2(t) &= \frac{\sigma}{2\sqrt{2h_0}} \left[2h_0 \operatorname{sech} \left(\sqrt{2h_0} \ t \right) - c_0 \operatorname{cosh} \left(\sqrt{2h_0} \ t \right) \right]. \end{split}$$

- Thus we have a (prospective) integral curve $\bar{p}(\cdot)$
- ullet Elementary calculations confirm that $\dot{ar{p}}(t) = ec{H}_5(ar{p}(t))$
- We now make a statement regarding all integral curves of \vec{H}_5 when $c_0>0$

Summary

Proposition

Let $p(\cdot): (-\varepsilon, \varepsilon) \to \mathfrak{se}(1,1)^*$ be an integral curve of \tilde{H}_5 such that

$$H_5(p(0)) = h_0$$
 and $C(p(0)) = c_0 > 0$.

Then there exists $t_0 \in \mathbb{R}$ and $\sigma \in \{-1,1\}$ such that $p(t) = \bar{p}(t+t_0)$ for every $t \in (-\varepsilon, \varepsilon)$, where

$$\left\{egin{aligned} ar{p}_1(t) &= rac{\sigma}{2\Omega}\left[\Omega^2\operatorname{sech}(\Omega t) + c_0\cosh(\Omega t)
ight] \ ar{p}_2(t) &= rac{\sigma}{2\Omega}\left[\Omega^2\operatorname{sech}(\Omega t) - c_0\cosh(\Omega t)
ight] \ ar{p}_3(t) &= -\Omega \tanh(\Omega t) \end{aligned}
ight.$$

with $\Omega = \sqrt{2h_0}$.

Conclusion

Further work on homogeneous systems

- investigate stability nature of equilibrium points
- link with optimal control problems and sub-Riemannian geometry

Inhomogeneous systems

- affine equivalence
- classification and integration