Hamilton-Poisson Formalism and Geometric Control

Catherine Bartlett

Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown 6140

> Honours Presentation, 29 October 2012

2 Elements of Hamilton-Poisson formalism

Optimal control

2 Elements of Hamilton-Poisson formalism

Optimal control

Geometric control

- brings together geometry, mechanics and optimal control
- treats controllability as geometric properties of the state space
- foundation for the extension of the maximum principle to differentiable manifolds

Matrix Lie groups

G is a matrix Lie group if G is a closed subgroup of $GL(n, \mathbb{R})$

Lie Algebras

• A Lie algebra is a vector space equipped with a bilinear operation $[\cdot, \cdot]$ (the Lie bracket) satisfying

$$\begin{split} [X,Y] &= -[Y,X] \quad (\text{skew symmetry}) \\ [X,[Y,Z]] + [Y,[Z,X] + [Z,[X,Y]] &= 0. \quad (\text{Jacobi identity}) \end{split}$$

• The tangent space of a Lie matrix is a Lie algebra.

Control systems

A control system Σ on a matrix Lie group G is given by

$$\dot{g} = \Xi(g, u), \quad g \in \mathsf{G}, \quad u \in U.$$

Ξ : G × U → TG is the dynamics of the system
U = ℝ^ℓ is the control set.

Left invariant control systems

 $\boldsymbol{\Sigma}$ is left invariant if the dynamics are such that

$$g \equiv (h, u) = \equiv (gh, u)$$
 for all $g, h \in G$ and every $u \in U$.

Admissible controls

The admissible controls of the system Σ are piecewise continuous maps $u(\cdot) : [0, T] \to \mathbb{R}^{\ell}$.

Trajectories

The trajectory is an absolutely continuous curve $g(\cdot)$ in G defined on an interval $[0, T] \subset \mathbb{R}$ i.e. $g(\cdot) : [0, T] \to G$ such that

$$\dot{g}(t) = g(t) \Xi(\mathbf{1}, u(t))$$

for almost all $t \in [0, T]$.

Introduction

2 Elements of Hamilton-Poisson formalism

Optimal control

Poisson structure

A Poisson structure on a vector space V is a bilinear operation $\{\cdot, \cdot\}$ on $\mathcal{F}(V) = C^{\infty}(V)$ such that:

- **1** $(\mathcal{F}(V), \{\cdot, \cdot\})$ is a Lie algebra
- 2 $\{\cdot,\cdot\}$ is a derivation in each factor, in other words:

$${FG, H} = {F, H}G + F{G, H}$$

for all $F, G, H \in \mathcal{F}(V)$.

Minus Lie Poisson structure

$$\{[F,G\}_{-}(\mu)=-\left\langle \mu,\left[dF(\mu),dG(\mu)
ight]
ight
angle$$

for $\mu \in \mathfrak{g}^*$ and $F, G \in \mathcal{F}(\mathfrak{g}^*)$

The Hamiltonian vector field

Let V be a Poisson Vector space. If $H \in \mathcal{F}(V)$, then the unique vector field X_H on V such that

$$X_H[F] = \{F, H\}$$

for all $F \in \mathcal{F}(V)$ is the Hamiltonian vector field of H.

Equations of motion on $(\mathfrak{g}^*, \{\cdot, \cdot\}_-)$

Integral curves μ of X_H satisfy

$$\dot{\mu}_i = \{\mu_i, H\}_- = -\sum_{j,k=1}^m c_{ij}^k \mu_k \frac{\partial H}{\partial \mu_j}$$

Introduction

2 Elements of Hamilton-Poisson formalism

Optimal control

Invariant optimal control problem

Minimize a cost functional J over trajectories of Σ subject to boundary data.

$$\begin{split} \dot{g} &= g \Xi(\mathbf{1}, u), \quad g(\cdot) : [0, T] \to \mathsf{G}, \ u(\cdot) : [0, T] \to \mathbb{R}^{\ell} \\ g(0) &= g_0, \quad g(T) = g_1, \quad g_0, g_1 \in \mathsf{G}, \quad T > 0 \\ J(u(\cdot)) &= \int_0^T L(u(t)) dt \to \min. \end{split}$$

Maximum principle

Extended Hamiltonian

$$H^{\lambda}(\xi, u(t)) = \lambda L(u(t)) + \xi(g \Xi(\mathbf{1}, u(t)))$$

Theorem

Suppose $(\bar{g}(\cdot), \bar{u}(\cdot))$ is an optimal controlled trajectory on the interval [0, T]. Then $\bar{g}(\cdot)$ is the projection of an integral curve $\bar{\xi}(\cdot)$ of the Hamiltonian vector field $X_{H}^{\lambda}(\xi, \bar{u}(\cdot))$ defined for $t \in [0, T]$ such that:

Extremals

Pairs $(\xi(\cdot), u(\cdot))$ satisfying the above conditions are called extremals. An extremal pair is called normal if $\lambda = -1$

Catherine Bartlett (Rhodes)

Left invariant control affine system

$$\dot{g} = g(A_0 + u_1A_1 + \cdots + u_\ell A_\ell)$$

Specialized cost

$$L(u) = \frac{1}{2} \left(\sum_{i=1}^{\ell} c_i u_i^2 \right), \quad c_i > 0$$

Theorem (Krishnaprasad, 1993)

Every normal extremal pair $(\xi(\cdot), u(\cdot))$, $\xi(\cdot) = (g(\cdot), \mu(\cdot))$ for an invariant optimal control problem, is such that

$$u_i(t) = \frac{1}{c_i}\mu(t)(A_i), \quad i = 1,\ldots,\ell$$

where $\mu(\cdot): [0, T]
ightarrow \mathfrak{g}_{-}^{*}$ is an integral curve of

$$egin{aligned} \mathcal{H}(\mu) &= \mu(\mathcal{A}_0) + rac{1}{2}\sum_{i=1}^\ell rac{1}{c_i} \mu(\mathcal{A}_i)^2, \quad \mu \in \mathfrak{g}^*. \end{aligned}$$

In coordinates

$$\dot{\mu}_i = \{\mu_i, H\}_{-} = -\sum_{j,k=1}^m c_{ij}^k \mu_k \frac{\partial H}{\partial \mu_j}$$

Introduction

2 Elements of Hamilton-Poisson formalism

3 Optimal control

Constraint equations

$$\dot{x} = u_2 \cos \phi$$
$$\dot{y} = u_2 \sin \phi$$
$$\dot{\phi} = u_1$$

Matrix representation

$$\mathsf{SE}(2) = \left\{ \begin{bmatrix} \mathsf{R}_{\theta} & \mathsf{v} \\ \mathsf{0} & \mathsf{1} \end{bmatrix} \in \mathsf{GL}(3,\mathbb{R}) \mid \mathsf{v} \in \mathbb{R}^{2 \times 1} \text{ and } \mathsf{R}_{\theta} \in \mathsf{SO}(2) \right\}$$

Lie algebra $\mathfrak{se}(2)$

$$\mathfrak{se}(2)=\left\{egin{bmatrix}0&-a&b\a&0&c\0&0&0\end{bmatrix}\mid a,b,c\in\mathbb{R}
ight\}$$

Standard basis of $\mathfrak{se}(2)$

$$E_1 = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \qquad E_2 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \qquad E_3 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

Commutator relations

$$[E_1,E_2]=E_3, \quad [E_1,E_3]=-E_2, \quad [E_2,E_3]=0.$$

Structure constants of $\mathfrak{se}(2)$

$$c_{31}^2 = c_{12}^3 = 1, \qquad c_{13}^2 = c_{21}^3 = -1,$$

and $c_{ii}^{k} = 0$ for all other combinations of *i*, *j*, *k*.

The unicycle and SE(2)

Set

The unicycle as a control problem on SE(2)

$$g = \begin{bmatrix} \cos \phi & -\sin \phi & x \\ \sin \phi & \cos \phi & y \\ 0 & 0 & 1 \end{bmatrix} \in \mathsf{SE}(2)$$

• The unicycle equations take the form
$$\dot{g} = g(u_1 E_1 + u_2 E_2)$$

Associated optimal control problems

$$\begin{split} \dot{g} &= g(u_1 E_1 + u_2 E_2), \quad g(\cdot) : [0, T] \to \mathsf{SE}(2), \ u(\cdot) : [0, T] \to \mathbb{R}^{\ell} \\ g(0) &= g_0, \quad g(T) = g_1, \quad g_0, g_1 \in \mathsf{SE}(2), \quad T > 0 \\ J(u(\cdot)) &= \frac{1}{2} \int_0^T (c_1 u_1^2 + c_2 u_2^2) dt \to \min \qquad c_1, c_2 > 0, \ u = (u_1, u_2) \in \mathbb{R}^2 \end{split}$$

Extended Hamiltonian

$$H = -\frac{1}{2}(c_1u_1^2 + c_2u_2^2) + \mu_1u_1 + \mu_2u_2.$$

From Krishnaprasad's theorem

$$ar{u}_1=rac{1}{c_1}\mu_1$$
 and $ar{u}_2=rac{1}{c_2}\mu_2$

where $\mu(\cdot)$ is the integral curve of

$$H = \frac{1}{2c_1}\mu_1^2 + \frac{1}{2c_2}\mu_2^2.$$

Integration

Equations of motion

From

$$\dot{\mu}_i = -\sum_{j,k=1}^3 c_{ij}^k \mu_k \frac{\partial H}{\partial \mu_j},$$

we have

$$\dot{\mu}_1 = -\frac{1}{c_2}\mu_2\mu_3$$
$$\dot{\mu}_2 = \frac{1}{c_1}\mu_1\mu_3$$
$$\dot{\mu}_3 = \frac{1}{c_1}\mu_1\mu_2.$$

These equations can be integrated using Jacobi elliptic functions.

Catherine Bartlett (Rhodes)

HP Formalism and Geometric Control