Control Affine Systems on 3D Lie Groups

Rory Biggs

Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown 6140

Postgraduate Seminar in Mathematics NMMU, Port Elizabeth, 5–6 October 2012

Outline

Introduction

- Systems: equivalence and controllability
- 3 Conclusion

Outline

Introduction

- Systems: equivalence and controllability
- Conclusion

Problem statement

Study equivalence and controllability of control systems

Systems

- left-invariant control affine
- SE(2), SE(1,1), SO(3), SO(2,1)₀

Equivalence

detached feedback equivalence

Controllability

- equivalence class
- characterize

Left-invariant control affine systems

System Σ

$$\dot{g} = g(A + u_1B_1 + \cdots + u_\ell B_\ell), \qquad g \in G, \ u \in \mathbb{R}^\ell$$

$$A + \langle B_1, \dots, B_\ell \rangle$$
 — ℓ -dim affine subspace of \mathfrak{g}

Trajectory $g(\cdot):[0,T]\to G$

- for admissible control $u(\cdot):[0,T]\to\mathbb{R}^\ell$
- integral curve of time-varying vector field

Controllable

- ullet Exists a trajectory between any two points $g_0,g_1\in {\sf G}$
- G connected, Σ has full-rank necessary

Classical 3D groups

Euclidean group SE(2)

$$\begin{bmatrix} 1 & 0 & 0 \\ x & \cos z & -\sin z \\ y & \sin z & \cos z \end{bmatrix}$$

$$[E_2, E_3] = E_1$$

 $[E_3, E_1] = E_2$
 $[E_1, E_2] = 0$

Semi-Euclidean group SE (1, 1)

$$\begin{bmatrix} 1 & 0 & 0 \\ x & \cosh z & -\sinh z \\ y & -\sinh z & \cosh z \end{bmatrix}$$

$$[E_2, E_3] = E_1$$

 $[E_3, E_1] = -E_2$
 $[E_1, E_2] = 0$

Classical 3D groups

Orthogonal group SO(3)

$$g^{ op}g=\mathbf{1}$$
 det $g=1$

$$[E_2, E_3] = E_1$$

 $[E_3, E_1] = E_2$
 $[E_1, E_2] = E_3$

Pseudo-orthogonal group SO(2,1)

$$g^{ op}J\,g=J$$
 $J=\mathrm{diag}\,(1,1,-1)$ $\det g=1$

$$[E_2, E_3] = E_1$$

 $[E_3, E_1] = E_2$
 $[E_1, E_2] = -E_3$

Example on SE(2)

$\Sigma: \dot{g}=g(E_2+uE_3)$

$$\dot{g} = \begin{bmatrix} 1 & 0 & 0 \\ x & \cos z & -\sin z \\ y & \sin z & \cos z \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -u \\ 1 & u & 0 \end{bmatrix}$$

Parametrically

$$\dot{x} = -\sin z \qquad x(0) = 0$$

$$\dot{y} = \cos z \qquad y(0) = 0$$

$$\dot{z}=u$$
 $z(0)=0$

Equivalence

$$\Sigma: \dot{g} = g(A + u_1B_1 + \cdots + u_\ell B_\ell)$$

$$\Sigma':\; \dot{g}=g(A'+u_1B_1'+\cdots+u_\ell B_\ell')$$

are equivalent if $\exists \phi \in Aut(G)$ relating trajectories

Example

$$\Sigma$$
: $E_3 - E_1 + uE_3$

$$\Sigma'$$
: $\frac{1}{4}(2E_1+E_2)+uE_3$

Characterization

$$\exists \psi \in d \operatorname{Aut}(G),$$

$$\psi \cdot (\mathsf{A} + \langle \mathsf{B}_1, \dots, \mathsf{B}_\ell \rangle) = \mathsf{A}' + \left\langle \mathsf{B}_1', \dots, \mathsf{B}_\ell' \right\rangle$$

Outline

Introduction

- Systems: equivalence and controllability
- Conclusion

Euclidean group SE(2)

d Aut (SE (2))

$$\left\{ \begin{bmatrix} x & y & v \\ -\sigma y & \sigma x & w \\ 0 & 0 & 1 \end{bmatrix} : x, y, z, v, w \in \mathbb{R}, \ \sigma = \pm 1, \ x^2 + y^2 \neq 0 \right\}$$

- preserves $\langle E_1, E_2 \rangle$
- transitive on $\langle E_1, E_2 \rangle \setminus \{ \mathbf{0} \}$

Euclidean group SE(2)

Single-input

$$\Sigma_1^{(1)}: E_2 + uE_3$$

 $\Sigma_{2,\alpha}^{(1)}: \alpha E_3 + uE_2$

$$\Sigma_{2,\alpha}^{(1)}: \alpha E_3 + uE_2$$

Two-input

$$\Sigma_1^{(2)}$$
: $E_1 + u_1 E_2 + u_2 E_3$

$$\Sigma_1^{(2)}$$
: $E_1 + u_1 E_2 + u_2 E_3$
 $\Sigma_{2,\alpha}^{(2)}$: $\alpha E_3 + u_1 E_1 + u_2 E_2$

Controllability

All full-rank systems are controllable

[Bonnard, Jurdjevic, et al, 1982]

Semi-Euclidean group SE (1, 1)

d Aut (SE (1,1))

$$\left\{ \begin{bmatrix} x & y & v \\ \sigma y & \sigma x & w \\ 0 & 0 & 1 \end{bmatrix} : x, y, z, v, w \in \mathbb{R}, \ \sigma = \pm 1, \ x^2 - y^2 \neq 0 \right\}$$

- preserves subsets
 - \bullet $\langle E_1, E_2 \rangle$
 - $C = \langle E_1 + E_2 \rangle \cup \langle E_1 E_2 \rangle$
- transitive on
 - $\langle E_1, E_2 \rangle \setminus \mathcal{C}$
 - C\{0}

Semi-Euclidean group SE (1, 1)

Single-input

$$\Sigma_1^{(1)}: E_1 + uE_3$$

 $\Sigma_{2,\alpha}^{(1)}: \alpha E_3 + uE_2$

$$\Sigma_{2,\alpha}^{(1)}: \alpha E_3 + u E_2$$

Two-input

$$*\Sigma_1^{(2)}: E_1 + u_1E_2 + u_2E_3$$

$$\Sigma_2^{(2)}: E_1 + u_1(E_1 + E_2) + u_2E_3$$

$$\Sigma_{3,\alpha}^{(2)}: \alpha E_3 + u_1 E_1 + u_2 E_2$$

Controllability (simply-connected, completely solvable)

Controllable $\iff B_1, \ldots, B_\ell$ generate $\mathfrak{se}(1,1)$

[Sachkov, 2009]

Orthogonal group SO(3)

$$d \operatorname{Aut}(SO(3)) = SO(3)$$

- preserves $A \bullet B = a_1b_1 + a_2b_2 + a_3b_3$
- preserves spheres $S_{\alpha} = \{A : A \bullet A = \alpha > 0\}$
- ullet transitive on spheres \mathcal{S}_{lpha}

Orthogonal group SO(3)

Systems

$$\Sigma_{\alpha}^{(1)}$$
: $\alpha E_2 + uE_3$

$$\begin{array}{l} \Sigma_{\alpha}^{(1)} \colon \ \alpha E_2 + u E_3 \\ \Sigma_{\alpha}^{(2)} \colon \ \alpha E_1 + u_1 E_2 + u_2 E_3 \end{array}$$

Controllability

Compact ⇒ all full-rank systems are controllable

Pseudo-orthogonal group $SO(2,1)_0$

$$d$$
 Aut (SO $(2,1)_0$) = SO $(2,1)$

- preserves $A \odot B = a_1b_1 + a_2b_2 a_3b_3$
- preserves hyperboloids $\mathcal{H}_{\alpha} = \{A : A \odot A = \alpha, A \neq 0\}$
- transitive on hyperboloids \mathcal{H}_{α}

Pseudo-orthogonal group SO (2, 1)₀

Single-input

*
$$\Sigma_1^{(1)}$$
: $E_3 + u(E_2 + E_3)$

*
$$\Sigma_{2,\alpha}^{(1)}$$
: $\alpha E_1 + u E_3$

*
$$\Sigma_{3,\alpha}^{(1)}$$
: $\alpha E_3 + u E_2$

$$\Sigma_{4,\alpha}^{(1)}$$
: $\alpha E_1 + uE_2$

Pseudo-orthogonal group $SO(2,1)_0$

Two-input

*
$$\Sigma_1^{(2)}$$
: $E_3 + u_1 E_1 + u_2 (E_2 + E_3)$

*
$$\Sigma_2^{(2)}$$
: $\alpha E_1 + u_1 E_2 + u_2 E_3$

*
$$\Sigma_{3,\alpha}^{(2)}$$
: $\alpha E_3 + u_1 E_1 + u_2 E_2$

Pseudo-orthogonal group $SO(2,1)_0$

Controllability

A full-rank system is controllable

$$\iff \exists C \in A + \langle B_1, \dots, B_\ell \rangle \text{ such that } C \odot C < 0$$

- Suppose $\exists C$ such that $C \odot C < 0$
 - $t \rightarrow \exp(tC)$ is periodic
 - controllable

[Jurdjevic and Sussmann, 1972]

- If no such C exists
 - system equivalent to $\Sigma_{3,\alpha}^{(1)}$, not controllable

Outline

Introduction

- Systems: equivalence and controllability
- Conclusion

Conclusion

Summary

- Classified systems on 3D matrix Lie groups
- Characterized controllability

Outlook

- Organize systematically results
- Optimal control (and classification)