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Problem statement

..
Study equivalence and controllability of control systems

Systems

@ left-invariant control affine

@ SE(2), SE(1,1), SO(3), SO(2,1)9
Equivalence

@ detached feedback equivalence
Controllability

@ equivalence class

@ characterize
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Left-invariant control affine systems

g=9(A+uByi+---+uBy), geG,ucR!

A+ (By,...,By) — ¢-dim affine subspace of g )

Trajectory g(-) : [0,T] = G
@ for admissible control u(-) : [0, T] — R*
@ integral curve of time-varying vector field

Controllable
@ Exists a trajectory between any two points go,g; € G
@ G connected, ¥ has full-rank — necessary

v
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Classical 3D groups

Euclidean group SE (2)

1 0 0 [E2,Es] =Ex
X €0sz —sinz [Es, E1] = E>

y sinz cosz [E1,Ex] =0

Semi-Euclidean group SE (1,1)

1 0 [E2, B3] = E1
X coshz —smhz [Es, E1] = —E>
y —sinhz coshz [E1,Ex] =0
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Classical 3D groups

Orthogonal group SO (3)

[E2,E3] = E;
g'g=1 | | _

[Es,E1] = E>
detg=1

[E1,E2] =E3

Pseudo-orthogonal group SO (2, 1)

9'Jg=1J [E2,E3] = E1
J =diag(1,1,-1) { [Es3, E1] = E2
detg =1 [E1,E2] = —E3

N~
~

v

Rory Biggs (Rhodes) Control Affine Systems on 3D Lie Groups PG Sem. Math. 2012 7122



Example on SE (2)

2 g = g(E2+UE3)
1 0 0 00 O

g=|x cosz —sinz| |0 0 -u /»
y sinz cosz 1 u O

Parametrically

| A

X =—sinz x(0)=0
y =C0sz y(0) =0
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Equivalence

(A
2 g:g(A+U1Bl+"'+Ung)
Y:g=0g(A+uB] + - +uBy)

are equivalent if 3¢ € Aut(G) relating trajectories

-----

Y : E3 — E; + UEsg Y': 2(2E; + Ep) + UE3

Characterization

J¢ € d Aut(G), ¢ (A+ (B1,...,Bg)) =A +(Bf,...,B})
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9 Systems: equivalence and controllability
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Euclidean group SE (2)

X y Vv
—oy oX W| :X,¥,Z,V,WER, 0 =41, x24+y2#£0
0 0 1
@ preserves (E;, Ep)
@ transitive on (E;, E;) \{0} J
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Euclidean group SE (2)

Single-input

M Ep + UE;
() . 0E; + UE,

2)

Z(l . E1 +uEs + UxEs

Z(Zil: aEsz + U E; + UxEs

Controllability
All full-rank systems are controllable  [Bonnard, Jurdjevic, et al, 1982]
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Semi-Euclidean group SE(1,1)

X y Vv
oy oX W
0O 0 1

CX,Y,Z,V,WER, 0 ==+1,x°—y2#£0

@ preserves subsets
o <Ela E2>

o C=(Ey +Ey)U

@ transitive on
o (E1,Ex)\C
e C\{0}

(E1 — Ep)
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Semi-Euclidean group SE(1,1)

Single-input

*Zg_z) : E1+uiEs + UsE3

2
2(2) : ElAUl(E1+E2)AU2E3
Zg?i : aBEsz +uEq + UsEs

Controllability (simply-connected, completely solvable)

Controllable < Bg,...,B; generate se(1,1) [Sachkov, 2009]
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Orthogonal group SO (3)

d Aut (SO (3)) = SO (3)

@ preserves AeB = a;b; + ayb, + ashs
@ preserves spheres S, = {A: AeA=a >0}
@ transitive on spheres S,
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Orthogonal group SO (3)

). aEj 4+ UE3

(1
Z&Z): aEq + UuEs + UyEs

Controllability
Compact = all full-rank systems are controllable

Rory Biggs (Rhodes) Control Affine Systems on 3D Lie Groups PG Sem. Math. 2012 16/ 22



Pseudo-orthogonal group SO (2, 1)

A
d Aut (SO (2,1)o) = SO (2,1)

@ preserves A® B = a;b; +ayb, — agbs
@ preserves hyperboloids H, = {A:A®A=a, A#0}
@ transitive on hyperboloids H,,
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Pseudo-orthogonal group SO (2, 1)

Single-input
*s\V. E3 + u(Es + Ea)
*Z(Zl): aEj + UE3

(e}

(e}

*Zgl) . aEz + UE;

Zgﬁl: aE1 + uEp
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Pseudo-orthogonal group SO (2, 1)

*Z(l : E3+U1E1+U2(E2+E3)
*2(22): aE; + uiEy + UpEs
*2(3?3[: aEsz + u1Eq1 + UusE;
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Pseudo-orthogonal group SO (2, 1)

Controllability

A full-rank system is controllable
< dJC €A+ (By,...,By) suchthat CoC <0

@ Suppose JC suchthat CoC <0

o t — exp(tC) is periodic

e controllable [Jurdjevic and Sussmann, 1972]
@ If no such C exists

o system equivalent to Zglc)y not controllable

Rory Biggs (Rhodes) Control Affine Systems on 3D Lie Groups PG Sem. Math. 2012 20/ 22



@ Conclusion
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Conclusion

@ Classified systems on 3D matrix Lie groups
@ Characterized controllability

@ Organize systematically results
@ Optimal control (and classification)
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