Some Remarks on the Oscillator Group

R. Biggs C.C. Remsing*

Department of Mathematics (Pure & Applied) Rhodes University, 6140 Grahamstown, South Africa

Differential Geometry and its Applications Brno, Czech Republic, August 19-23, 2013

Outline

- Algebraic structure
 - The oscillator group
 - The oscillator algebra
 - Adjoint (and coadjoint) orbits
 - Classification (of linear subspaces, subalgebras, ideals)
 - Further remarks
- Locally isomorphic groups
 - The universal cover
 - Normal discrete subgroups
 - Classification (of connected Lie groups)
- Outlook

The oscillator group Osc

Matrix representation

Osc:
$$\begin{bmatrix} 1 & -y\cos\theta - z\sin\theta & z\cos\theta - y\sin\theta & -2x \\ 0 & \cos\theta & \sin\theta & z \\ 0 & -\sin\theta & \cos\theta & y \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$(x, y, z, \theta \in \mathbb{R})$$

Fact (Medina, 1985)

Osc is the only simply connected four-dimensional non-Abelian solvable (matrix) Lie group which admits a bi-invariant Lorentzian metric.

The oscillator Lie algebra osc

Matrix representation

$$\mathfrak{osc}: \begin{bmatrix} 0 & -y & z & -2x \\ 0 & 0 & \theta & z \\ 0 & -\theta & 0 & y \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$(x, y, z, \theta \in \mathbb{R})$$

Commutator table for standard basis

	E_1	E_2	<i>E</i> ₃	E ₄
E_1	0	0	0	0
<i>E</i> ₂	0	0	E_1	$-E_3$
<i>E</i> ₃	0	$-E_1$	0	E ₂
E ₄	0	E ₃	$-E_2$	0

Adjoint orbits

Proposition

The adjoint orbit $\mathcal{O}_A = \{ \operatorname{Ad}_g A : g \in \operatorname{Osc} \}$ through $A = M(x^0, y^0, z^0, \theta^0)$ is (in the hyperplane $\theta^0 E_4 + \langle E_1, E_2, E_3 \rangle$)

- a point $\{x^0E_1\}$ $(y^0=z^0=\theta^0=0)$
- a cylinder

$$\{xE_1 + r\cos\vartheta E_2 + r\sin\vartheta E_3 : x, \vartheta \in \mathbb{R}, r = \sqrt{(y^0)^2 + (z^0)^2} \}$$

$$(\theta^0 = 0, (y^0)^2 + (z^0)^2 \neq 0)$$

• a paraboloid $\{*E_1 + r\cos\vartheta E_2 + r\sin\vartheta E_3 + \theta^0 E_4 : r, \vartheta \in \mathbb{R}\},\$ $* = \frac{1}{2\theta}(2x^0\theta^0 + (y^0)^2 + (z^0)^2 - r^2) \quad (\theta^0 \neq 0).$

Invariant scalar products

A scalar product $\langle\langle\cdot,\cdot\rangle\rangle$ on (a Lie algebra) ${\mathfrak g}$ is said to be invariant if

$$\begin{split} \langle \langle [A,B],C\rangle \rangle &= \langle \langle A,[B,C]\rangle \rangle, \qquad A,B,C \in \mathfrak{g} \\ \text{or, equivalently,} \quad \langle \langle \operatorname{Ad}_g A,\operatorname{Ad}_g B\rangle \rangle &= \langle \langle A,B\rangle \rangle, \qquad A,B \in \mathfrak{g},\,g \in \mathsf{G}. \end{split}$$

Proposition

The Lie algebra \mathfrak{osc} admits (exactly) one family of invariant scalar products ω_{α} , $\alpha \in \mathbb{R}$; in coordinates,

$$\omega_{lpha} = egin{bmatrix} 0 & 0 & 0 & 1 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 1 & 0 & 0 & lpha \end{bmatrix}.$$

Coadjoint orbits (and Casimirs)

The dual space osc*

The dual space \mathfrak{osc}^* can be (canonically) identified with \mathfrak{osc} via ω_{α} :

$$\omega_{\alpha}(A,\cdot) \in \mathfrak{osc}^* \quad \longleftrightarrow \quad A \in \mathfrak{osc}.$$

Note

- The coadjoint orbits of \mathfrak{osc} are the images of the adjoint orbits, under (any of) the isomorphisms $A \mapsto \omega_{\alpha}(A, \cdot)$.
- ω_{α} induces a family of Casimir functions on the (minus) Lie-Poisson space \mathfrak{osc}_{-}^{*} :

$$C_{\alpha}: \mathfrak{osc}^* \to \mathbb{R}, \quad \omega_{\alpha}(A, \cdot) \mapsto \omega_{\alpha}(A, A)$$

$$C_{\alpha}(p) = -\alpha p_1^2 + p_2^2 + p_3^2 + 2p_1p_4 \qquad (p = p_i E^i).$$

Equivalence (of linear subspaces)

Definition

Two linear subspaces $\mathfrak a$ and $\mathfrak b$ of (a Lie algebra) $\mathfrak g$ are $\mathfrak L$ -equivalent if there exists an automorphism $\psi \in \operatorname{Aut}(\mathfrak g)$ such that

$$\psi \cdot \mathfrak{a} = \mathfrak{b}.$$

Note

The trace $\Gamma = \langle B_1, \dots, B_\ell \rangle$ of a (left-invariant) control affine system

$$\dot{g} = g(u_1B_1 + \cdots + u_\ell B_\ell), \quad g \in \mathsf{G}, \ u \in \mathbb{R}^\ell$$

on (the matrix Lie group) G is a linear subspace of (the Lie algebra) \mathfrak{g} . Two (full-rank) control affine systems are (detached feedback) equivalent if and only if their corresponding traces are \mathfrak{L} -equivalent.

Automorphisms

The group of automorphisms of \mathfrak{osc} : Aut (\mathfrak{osc})

$$\left\{
\begin{bmatrix}
\sigma(x^2 + y^2) & wy - \sigma vx & -wx - \sigma vy & u \\
0 & x & y & v \\
0 & -\sigma y & \sigma x & w \\
0 & 0 & 0 & \sigma
\end{bmatrix} : x, y, u, v, w, \sigma \in \mathbb{R}
\right\}$$

$$(x^2 + y^2 \neq 0, |\sigma| = 1).$$

Note

For inner automorphisms $Inn(\mathfrak{osc})$, we require

$$x^2 + y^2 = 1$$
 $\sigma = 1$ $u = -\frac{1}{2}(v^2 + w^2)$.

Classification of linear subspaces

Theorem

Any proper linear subspace of (the Lie algebra) osc is \mathfrak{L} -equivalent to exactly one of the linear subspaces

$$\langle E_1 \rangle, \qquad \langle E_2 \rangle, \qquad \langle E_4 \rangle$$

$$\langle E_1, E_2 \rangle, \qquad \langle E_1, E_4 \rangle, \qquad \langle E_2, E_3 \rangle, \qquad \langle E_2, E_4 \rangle$$

$$\langle E_1, E_2, E_3 \rangle, \qquad \langle E_1, E_2, E_4 \rangle, \qquad \langle E_2, E_3, E_4 \rangle.$$

Classification of linear subspaces (cont.)

Proof (sketch): the one-dimensional case

Let $\mathfrak{a} = \langle a^i E_i \rangle \subset \mathfrak{osc}$.

• If $a^4 \neq 0$, then we may assume $a^4 = 1$ and so

$$\psi = \begin{bmatrix} 1 & a^2 & a^3 & -a^1 - (a^2)^2 - (a^3)^2 \\ 0 & 1 & 0 & -a^2 \\ 0 & 0 & 1 & -a^3 \\ 0 & 0 & 0 & 1 \end{bmatrix} \in \operatorname{Aut}(\mathfrak{osc}), \quad \psi \cdot \mathfrak{a} = \langle E_4 \rangle.$$

• If $a^4 = 0$ and $\alpha = (a^2)^2 + (a^3)^2 \neq 0$, then

$$\psi = \frac{1}{\alpha} \begin{bmatrix} 1 & -\frac{a^1 a^2}{\alpha} & -\frac{a^1 a^3}{\alpha} & 0 \\ 0 & a^2 & a^3 & a^1 \\ 0 & -a^3 & a^2 & 0 \\ 0 & 0 & 0 & \alpha \end{bmatrix} \in \operatorname{\mathsf{Aut}}(\mathfrak{osc}), \quad \psi \cdot \mathfrak{a} = \langle E_2 \rangle.$$

Classification of linear subspaces (cont.)

Proof (sketch): the three-dimensional case

Let $\mathfrak{a}^{\perp} = \langle a^i E_i \rangle \subset \mathfrak{osc}$. Suppose $a^4 \neq 0$.

We have

$$\varphi = \begin{bmatrix} 1 & \frac{a^2}{a^4} & \frac{a^3}{a^4} & -\frac{(a^2)^2 + (a^3)^2}{2(a^4)^2} \\ 0 & 1 & 0 & -\frac{a^2}{a^4} \\ 0 & 0 & 1 & -\frac{a^3}{a^4} \\ 0 & 0 & 0 & 1 \end{bmatrix} \in \mathsf{Inn}(\mathfrak{osc}), \qquad \varphi \cdot \mathfrak{a}^{\perp} = \langle \alpha E_1 + E_4 \rangle.$$

• Thus $\varphi \cdot \mathfrak{a} = \langle E_2, E_3, -\alpha E_1 + E_4 \rangle$ and so

$$\psi = \begin{bmatrix} 1 & 0 & 0 & \alpha \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \in \mathsf{Aut}(\mathfrak{osc}), \qquad (\psi \circ \varphi) \cdot \mathfrak{a} = \langle E_2, E_3, E_4 \rangle.$$

Classification of subalgebras

Corollary

Any proper subalgebra of (the Lie algebra) osc is \mathfrak{L} -equivalent to exactly one of the subalgebras

$$\begin{split} \langle E_1 \rangle, & \langle E_2 \rangle, & \langle E_4 \rangle \\ \langle E_1, E_2 \rangle, & \langle E_1, E_4 \rangle \\ \langle E_1, E_2, E_3 \rangle. \end{split}$$

Note

- Except for $\langle E_1, E_2, E_3 \rangle$, all these subalgebras are Abelian.
- The Lie subalgebra $\langle E_1, E_2, E_3 \rangle$ is isomorphic to the Heisenberg Lie algebra \mathfrak{h}_3 .

Full-rank linear subspaces and ideals

Corollary (full-rank linear subspaces)

Any full-rank linear subspace of (the Lie algebra) \mathfrak{osc} is \mathfrak{L} -equivalent to exactly one of the linear subspaces

$$\langle E_2, E_4 \rangle$$
, $\langle E_1, E_2, E_4 \rangle$, $\langle E_2, E_3, E_4 \rangle$.

Corollary (ideals)

The Lie algebra osc has exactly two proper ideals:

$$\langle E_1 \rangle = Z(\mathfrak{osc}), \qquad \langle E_1, E_2, E_3 \rangle \cong \mathfrak{h}_3.$$

Remark 1

Remark (semidirect sum)

The Lie algebra \mathfrak{osc} decomposes as semidirect sum of the ideal $\langle E_1, E_2, E_3 \rangle$ and the subalgebra $\langle E_4 \rangle$:

$$\mathfrak{osc}\cong\mathfrak{h}_3\rtimes\mathbb{R}.$$

Note

The Lie group Osc decomposes as semidirect product of (closed) Lie subgroups H_3 and SO(2):

$$Osc \cong H_3 \rtimes SO(2)$$
.

Remark 2

Remark (central extension)

The quotient of (the Lie algebra) \mathfrak{osc} by the ideal $\langle E_1 \rangle$ is (isomorphic to) the Euclidean Lie algebra $\mathfrak{sc}(2)$:

$$\mathfrak{osc}/Z(\mathfrak{osc})\cong\mathfrak{se}(2).$$

Note

- \mathfrak{osc} is the only (non-trivial) four-dimensional central extension of \mathfrak{se} (2).
- The Euclidean group SE (2) is (isomorphic to) a quotient group of (the Lie group) Osc:

$$\operatorname{Osc}/Z(\operatorname{Osc})\cong\operatorname{SE}(2).$$

The universal covering Lie group

Matrix representation

$$\widetilde{\mathsf{Osc}}: \begin{bmatrix} 1 & -y\cos\theta - z\sin\theta & z\cos\theta - y\sin\theta & -2x & 0\\ 0 & \cos\theta & \sin\theta & z & 0\\ 0 & -\sin\theta & \cos\theta & y & 0\\ 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 & e^{\theta} \end{bmatrix} \\ (x,y,z,\theta \in \mathbb{R})$$

Normal discrete subgroups

Center

$$Z(\widetilde{\mathsf{Osc}}): \begin{bmatrix} 1 & 0 & 0 & 0 & -2x \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & e^{2\pi\theta} \end{bmatrix} \longleftrightarrow (x,\theta) \in \mathbb{R} \times \mathbb{Z} \subset \mathbb{R}^2$$

Automorphisms of center

$$\operatorname{Aut}\left(\widetilde{\operatorname{Osc}}\right)\Big|_{Z(\widetilde{\operatorname{Osc}})} = \left\{ \begin{bmatrix} x \\ \theta \end{bmatrix} \mapsto \begin{bmatrix} \sigma r & u \\ 0 & \sigma \end{bmatrix} \begin{bmatrix} x \\ \theta \end{bmatrix} \ : \ r > 0, u \in \mathbb{R}, \sigma = \pm 1 \right\}$$

Normal discrete subgroups (cont.)

Lemma

Suppose $x_1, x_2 \in \mathbb{R}$, $\theta_1, \theta_2 \in \mathbb{Z}$ and (x_1, θ_1) , (x_2, θ_2) are linearly independent. Then there exist r > 0 and $u \in \mathbb{R}$ such that

$$\begin{bmatrix} r & u \\ 0 & 1 \end{bmatrix} \left(\begin{bmatrix} x_1 \\ \theta_1 \end{bmatrix} \mathbb{Z} + \begin{bmatrix} x_2 \\ \theta_2 \end{bmatrix} \mathbb{Z} \right) = \begin{bmatrix} 0 \\ \gcd(\theta_1, \theta_2) \end{bmatrix} \mathbb{Z} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \mathbb{Z}.$$

Normal discrete subgroups (cont.)

Proof (sketch)

• By Bézout's identity, there exists $a, b \in \mathbb{Z}$ such that

$$a\theta_1 + b\theta_2 = \gcd(\theta_1, \theta_2) > 0.$$

• For $r=rac{a heta_1+b heta_2}{|x_1 heta_2-x_2 heta_1|}$ and $u=-rac{ax_1+bx_2}{|x_1 heta_2-x_2 heta_1|}$ we have

$$\begin{bmatrix} r & u \\ 0 & 1 \end{bmatrix} \left(\begin{bmatrix} x_1 \\ \theta_1 \end{bmatrix} \mathbb{Z} + \begin{bmatrix} x_2 \\ \theta_2 \end{bmatrix} \mathbb{Z} \right) = \begin{bmatrix} b\sigma \\ \theta_1 \end{bmatrix} \mathbb{Z} + \begin{bmatrix} -a\sigma \\ \theta_2 \end{bmatrix} \mathbb{Z}$$

where $\sigma = \operatorname{sgn}(x_1\theta_2 - x_2\theta_1)$.

• By showing each group contains the generators of the other, we get

$$(b\sigma, \theta_1)\mathbb{Z} + (-a\sigma, \theta_2)\mathbb{Z} = (0, \gcd(\theta_1, \theta_2))\mathbb{Z} + (1, 0)\mathbb{Z}.$$

Normal discrete subgroups: main result

Theorem

Any (non-trivial) normal discrete subgroup of Osc is equivalent to exactly one of the following (central discrete subgroups):

$$\begin{split} \mathsf{N}_{1,n} &= \{\, (0,n\theta) \ : \ \theta \in \mathbb{Z} \}, \quad n \in \mathbb{N} \\ \mathsf{N}_2 &= \{\, (x,0) \ : \ x \in \mathbb{Z} \} \\ \mathsf{N}_{1,n} \times \mathsf{N}_2 &= \{\, (x,n\theta) \ : \ \theta, x \in \mathbb{Z} \}, \quad n \in \mathbb{N}. \end{split}$$

Normal discrete subgroups: proof

Proof (sketch)

Let N be a central discrete subgroup.

- If $N = (0, n)\mathbb{Z}$, then $N = N_{1,n}$.
- If $N = (r, 0)\mathbb{Z}$, then $\psi = \operatorname{diag}\left(\frac{1}{r}, 1\right) \in \operatorname{Aut}\left(\widetilde{\operatorname{Osc}}\right)\Big|_{Z(\widetilde{\operatorname{Osc}})}$, $\psi \cdot N = N_2$.
- If $N = (r, n)\mathbb{Z}$, then

$$\psi = \begin{bmatrix} 1 & -\frac{r}{n} \\ 0 & 1 \end{bmatrix} \in \operatorname{Aut}\left(\widetilde{\operatorname{Osc}}\right) \Big|_{Z(\widetilde{\operatorname{Osc}})}, \qquad \psi \cdot \operatorname{N} = (0, n)\mathbb{Z} = \operatorname{N}_{1, n}.$$

• If $N = (x_1, \theta_1)\mathbb{Z} + (x_2, \theta_2)\mathbb{Z}$, then $\exists \psi \in \operatorname{Aut}(\widetilde{\operatorname{Osc}})\Big|_{Z(\widetilde{\operatorname{Osc}})}$ such that $\psi \cdot N = N_{1,n} \times N_2$, where $n = \gcd(\theta_1, \theta_2)$.

Classification of connected Lie groups

Corollary

There are four types of connected Lie groups with associated Lie algebra (isomorphic to) osc:

$$\widetilde{\mathsf{Osc}}, \qquad \widetilde{\mathsf{Osc}}/\mathsf{N}_{1,n}, \qquad \widetilde{\mathsf{Osc}}/\mathsf{N}_2, \qquad \widetilde{\mathsf{Osc}}/(\mathsf{N}_{1,n} \times \mathsf{N}_2).$$

Note (covering morphisms)

- $Osc/N_{1,n}$ is the *n*-fold covering of the oscillator group $Osc \cong Osc/N_{1,1}$.
- $\widetilde{\text{Osc}}/N_{1,n} \times N_2$ is the *n*-fold covering of the group $\widetilde{\text{Osc}}/(N_{1,1} \times N_2)$.

Matrix Lie groups

Fact (Onishchik-Vinberg, 1994)

A connected solvable Lie group is a matrix Lie group if and only if its commutator subgroup is simply connected.

Proposition

• The groups

$$\widetilde{\mathsf{Osc}}$$
 and $\widetilde{\mathsf{Osc}}/\mathsf{N}_{1,n}$

are matrix Lie groups.

The groups

$$\widetilde{\mathsf{Osc}}/\mathsf{N}_2$$
 and $\widetilde{\mathsf{Osc}}/(\mathsf{N}_{1,n}\times\mathsf{N}_2)$

are not matrix Lie groups.

Outlook

Oscillator groups: promising geometric objects

- invariant Lorentzian metrics
- locally symmetric structures
- Lie bialgebra structures (on the oscillator Lie algebras)
- Einstein-Yang-Mills equations

The oscillator group Osc

- invariant sub-Riemannian structures
- invariant control systems