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e The oscillator group
e The oscillator algebra
e Adjoint (and coadjoint) orbits
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o Classification (of connected Lie groups)

@ Outlook

Biggs, Remsing (Rhodes Univ) Some Remarks on the Oscillator Group DGA 2013



The oscillator group Osc

Matrix representation

1 —ycosf —zsinf zcosh —ysinf —2x
0 cosf sin 6 z
Osc : .
0 —sin6 cos 6 y
0 0 0 1
(x,y,2,0 € R)

Fact (Medina, 1985)

Osc is the only simply connected four-dimensional non-Abelian solvable
(matrix) Lie group which admits a bi-invariant Lorentzian metric.
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The oscillator Lie algebra osc

Matrix representation

0 -y z —2x
0O 0 6 =z
0eR
0sc 0 -0 0 y (X,y727 € )
0O 0 O 0

v

Commutator table for standard basis

| 6] B| &| &)

E; 0 0 0 0
E 0 0| & |-E
E; ol - & 0| &
E, o| B|-5 0

A\
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Adjoint orbits

The adjoint orbit Op = {AdgA : g € Osc} through
A= M(x%y0 20 6°) is (in the hyperplane 0°E, + (Ey, E, E3))

e a point {x°E;} (WP=2"=6"=0)

@ a cylinder
{xE1 + rcosVE, + rsindEs @ x,9 € R, r = +/(y%)2 + (2°)2}
(=0, () + (202 £0)

@ a paraboloid {*E; + rcos9Ey + rsin¥Ez +0°E; : r,9 € R},
* = 2—19(2X090 + (y9)2 4+ (2°)2 - r?)  (8°#£0).
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Invariant scalar products

A scalar product ((-,-)) on (a Lie algebra) g is said to be invariant if

<<[A7 B]7C>> = <<A7 [87 C]>>7 AB,Ceg
or, equivalently, ((AdgA,Adg B)) = ((A, B)), ABeg, geG.

| A\

Proposition
The Lie algebra osc admits (exactly) one family of invariant scalar
products wq, o € R; in coordinates,

= O O O
o O = O
o = O O
O o o
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Coadjoint orbits (and Casimirs)

The dual space osc*

The dual space osc* can be (canonically) identified with osc via wq:

wa(A, ) € 0s¢®  +— A€ osc.

| \

Note
@ The coadjoint orbits of osc are the images of the adjoint orbits,
under (any of) the isomorphisms A — wq (A, -).

® w, induces a family of Casimir functions on the (minus) Lie-Poisson
space osc*:
Coiosc" = R, wo(A,-) = wal(A A)
Calp) =—api +p5+p3+2mps  (p=piE’).

A\
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Equivalence (of linear subspaces)

Definition
Two linear subspaces a and b of (a Lie algebra) g are £-equivalent if
there exists an automorphism v € Aut(g) such that

Y-a=b.
The trace I = (By, ..., By) of a (left-invariant) control affine system

(X) g=g(wBi+--+wbB), gcGuck*

on (the matrix Lie group) G is a linear subspace of (the Lie algebra) g.
Two (full-rank) control affine systems are (detached feedback) equivalent
if and only if their corresponding traces are £-equivalent.
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Automorphisms

The group of automorphisms of osc: Aut (osc)

o(x®>+y?) wy —ow —wx—ovy u
8 x y :/ X, y,u,v,w,o €ER
—oy ox
0 0 0 o
(< +y2#0, o] =1). )

For inner automorphisms Inn (osc), we require

24y?=1 o=1 u=—3(v?+w?).
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Classification of linear subspaces

Any proper linear subspace of (the Lie algebra) osc is £-equivalent to
exactly one of the linear subspaces

(E1), (E2),  (E4)
(E1, BE2), (E1, Es), (E2, E3), (E2, Es)
(E1, Ez, E3), (E1, Ez, Ey), (Ez, E3, Es).
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Classification of linear subspaces (cont.)

Proof (sketch): the one-dimensional case
Let a = (a'E;) C osc.

e If a* # 0, then we may assume a* =1 and so

1 32 a3 _al _ (32)2 _ (33)2
0 1 O —/
Y= 3 6 3 € Aut (0sc), 1 -a= (Ey).
0 0 O 1

o If a* =0 and a = (a%)? + (a%)? # 0, then

0 a2 a3 o

_ 1 _

Y= S 2 € Aut (0sc), ¢ -a=(Ep).
0 0 0 «
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Classification of linear subspaces (cont.)

Proof (sketch): the three-dimensional case

Let at = (a'E;) C osc. Suppose a* # 0.
@ We have
1 a_z a_3 _(32)2+(a3)2
g & 2(3‘2‘)
a
Y= 0 10 At € Inn (osc), 0 -at = (aEL + E).
0 0 1 —
0 0 O 1
@ Thus ¢-a = (Ey, E3,—aE; + E4) and so
1 0 0 «
Y= 0 10 € Aut (osc) (Vo) -a=(Ep, E3, Ey)
- 001 0 ) @ — 2, L3,L4).
0 00 1
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Classification of subalgebras

Corollary

Any proper subalgebra of (the Lie algebra) osc is £-equivalent to exactly
one of the subalgebras

(E), (B2),  (Ea)

<E17E2>7 <E17E4>
<E17 E27 E3>

Note
@ Except for (Eq, Ep, E3), all these subalgebras are Abelian.

@ The Lie subalgebra (Ej, Ep, E3) is isomorphic to the Heisenberg Lie
algebra hs.

v,
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Full-rank linear subspaces and ideals

Corollary (full-rank linear subspaces)

Any full-rank linear subspace of (the Lie algebra) osc is £-equivalent to
exactly one of the linear subspaces

<E2aE4>7 <E17E27E4>7 <E27E3aE4>-

Corollary (ideals)

The Lie algebra osc has exactly two proper ideals:

(E1) = Z(osc), (E1, B2, E3) = b3.
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Remark (semidirect sum)

The Lie algebra osc decomposes as semidirect sum of the ideal
(E1, E2, E3) and the subalgebra (Es):

0sc = h3 x R.

The Lie group Osc decomposes as semidirect product of (closed) Lie
subgroups H3 and SO (2):

Osc = H3 x SO (2).
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Remark (central extension)

The quotient of (the Lie algebra) osc by the ideal (E;) is (isomorphic to)
the Euclidean Lie algebra se (2):

osc/Z(0s¢) = se (2).

Note
@ osc is the only (non-trivial) four-dimensional central extension of
se(2).
@ The Euclidean group SE (2) is (isomorphic to) a quotient group of
(the Lie group) Osc:

Osc/Z(Osc) = SE (2).
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The universal covering Lie group

Matrix representation

[1 —ycos —zsinf zcosf —ysinf —2x 0]
0 cosf sinf z 0
Osc 0 —sinf cosf y 0
0 0 0 1 0
0 0 0 0 €
(x,y,z,0 € R)
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Normal discrete subgroups

[1 0 0 0 —2x]|
0100 0
Z(Osc): [0 01 0 O — (x,0) eRXZCR?
0001 0
0 0 0 0 ]

Automorphisms of center

—~ X or u X
Aut(Osc)‘Z@svc)—{[H] — [0 a] [9] ; r>0,u€R,a—j:1}
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Normal discrete subgroups (cont.)

Suppose x1,x2 € R, 61,02 € Z and (x1,01), (x2,62) are linearly
independent. Then there exist r > 0 and u € R such that

r u X: X 0 1
Wz+ |2z = Z+ || Z.
0 1 91 92 ng (91, 92) 0
V.
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Normal discrete subgroups (cont.)

Proof (sketch)
o By Bézout's identity, there exists a, b € Z such that

ab, + b, = ng (91, 92) > 0.

_ 61+ b6 _ +b
o For r—m and u——% we have
r u X1 X bo —ao
Z 7| = Z 7

where o = sgn (x162 — x201).
@ By showing each group contains the generators of the other, we get
(bo,01)Z + (—ac,02)Z = (0, ged (61, 62))Z + (1,0)Z.
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Normal discrete subgroups: main result

Any (non-trivial) normal discrete subgroup of Osc is equivalent to exactly
one of the following (central discrete subgroups):

Nin={(0,n0) : 0€Z}, neN
No = {(x,0) : x € Z}
Nip,xNo={(x,nf) : ,x€Z}, neN.
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Normal discrete subgroups: proof

Proof (sketch)

Let N be a central discrete subgroup.
e If N=(0,n)Z, then N = Ny .
o If N=(r,0)Z, then 1 = diag(%,1) € Aut ((?sz)‘z(av), %N = Na.
SC

o If N=(r,n)Z, then

1/):[1 Tl e Au(0s)| ., weN=(0,m)Z =Ny

0 1 Z(0Osc)

o If N = (x1,01)Z + (x2,02)Z, then Fp € Aut (Osc) 5 such that
SC
Y- N =Ny, x Np, where n = ged (01, 62).
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Classification of connected Lie groups

Corollary

There are four types of connected Lie groups with associated Lie algebra
(isomorphic to) osc:

(/)\SE, C/)\S?Z/Nl,n, /O\S(/:/N2, O\SE/(NL,, X N2).

Note (covering morphisms)

° as?:/Nl,,, is the n-fold covering of the oscillator group
Osc = Osc/Ny 1.
° 6\57:/N17,, X Ny is the n-fold covering of the group 6\57:/(N1,1 x N2)

v

Biggs, Remsing (Rhodes Univ) Some Remarks on the Oscillator Group DGA 2013 23 /25



Matrix Lie groups

Fact (Onishchik—Vinberg, 1994)

A connected solvable Lie group is a matrix Lie group if and only if its
commutator subgroup is simply connected.

Proposition

@ The groups
Osc and (f)\s/c/Nl,,,

are matrix Lie groups.

@ The groups

Osc/Ny  and 675/c/(N1,,,><N2)

are not matrix Lie groups.
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Outlook

Oscillator groups : promising geometric

@ invariant Lorentzian metrics
@ locally symmetric structures
o Lie bialgebra structures (on the oscillator Lie algebras)

@ Einstein-Yang-Mills equations

v,

The oscillator group Osc

@ invariant sub-Riemannian structures

@ invariant control systems
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