Invariant Control Systems on the Heisenberg Group

Catherine Bartlett

Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown 6140

Eastern Cape Postgraduate Seminar in Mathematics NMMU, Port Elizabeth, 27–28 September 2013

Objective

Systems on H_3

Classify, under state space equivalence,

- single-input inhomogeneous systems
- two-input homogeneous systems.

Outline

Invariant control systems

Classification of systems

Outlook

Heisenberg group H₃

Matrix representation

$$\mathsf{H}_3 = \left\{ \begin{bmatrix} 1 & x_2 & x_1 \\ 0 & 1 & x_3 \\ 0 & 0 & 1 \end{bmatrix} | x_1, x_2, x_3 \in \mathbb{R} \right\}.$$

H₃ is a matrix Lie group:

- \bullet closed subgroup of $GL(3,\mathbb{R})\subset\mathbb{R}^{3\times 3}$
 - is a submanifold of $\mathbb{R}^{3\times3}$
 - group multiplication is smooth
- can be linearized
 - yields Lie algebra $\mathfrak{h}_3 = T_1 H_3$

Heisenberg Lie algebra \$\mathbf{h}_3\$

Matrix representation

$$\mathfrak{h}_3 = \left\{ egin{bmatrix} 0 & x_2 & x_1 \ 0 & 0 & x_3 \ 0 & 0 & 0 \end{bmatrix} \mid x_1, x_2, x_3 \in \mathbb{R}
ight\}.$$

Standard basis

$$E_1 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \qquad E_2 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \qquad E_3 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

Commutator relations

$$[E_1, E_2] = \mathbf{0}, \quad [E_1, E_3] = \mathbf{0}, \quad [E_2, E_3] = E_1.$$

The automorphism group of \mathfrak{h}_3

Lie algebra automorphism

Map $\psi:\mathfrak{g}\to\mathfrak{g}$ such that

- ullet ψ is a linear isomorphism
- ψ preserves the Lie bracket: $\psi[X, Y] = [\psi X, \psi Y]$.

Proposition

The automorphism group of \mathfrak{h}_3 is given by

$$Aut(\mathfrak{h}_3) = \left\{ \begin{bmatrix} hk - ji & l & m \\ 0 & h & i \\ 0 & j & k \end{bmatrix} \mid h, i, j, k, l, m \in \mathbb{R}, hk - ji \neq 0 \right\}.$$

Proof

Matrix representation

$$\psi = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}.$$

• Preserves the center (span of E_1)

$$\psi E_{1} = \lambda E_{1}$$

$$\implies \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \end{bmatrix} = \lambda \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

$$\implies a_{21}, a_{31} = 0.$$

Preserves the Lie bracket

$$\psi[E_{2}, E_{3}] = [\psi E_{2}, \psi E_{3}]$$

$$\Rightarrow \psi E_{1} = [\psi E_{2}, \psi E_{3}]$$

$$\Rightarrow \begin{bmatrix} a_{11} \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} -a_{23}a_{32} + a_{22}a_{33} \\ 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow a_{11} = -a_{23}a_{32} + a_{22}a_{33}$$

$$\Rightarrow \psi = \begin{bmatrix} -a_{23}a_{32} + a_{22}a_{33} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & a_{32} & a_{33} \end{bmatrix}.$$

Invertible

$$-a_{23}a_{32}+a_{22}a_{33}\neq 0.$$

Control systems

Left-invariant control affine system

$$\dot{g} = g \Xi (\mathbf{1}, u) = g(A + u_1 B_1 + \dots + u_\ell B_\ell), \quad g \in G, \quad u \in \mathbb{R}^\ell,$$

$$A, B_1, \dots, B_\ell \in \mathfrak{g}.$$

- admissible controls: $u(\cdot):[0,T]\to\mathbb{R}^\ell$
- trajectory: absolutely continuous curve

$$g(\cdot):[0,T]\to\mathsf{G}$$

such that $\dot{g}(t) = g(t) \Xi(\mathbf{1}, u(t))$ for almost every $t \in [0, T]$

- parametrization map: $\Xi(\mathbf{1},\cdot):\mathbb{R}^\ell o\mathfrak{g}$
- trace: $\Gamma = A + \Gamma^0 = A + \langle B_1, \dots, B_\ell \rangle$
- homogeneous system: $A \in \Gamma^0$
- inhomogeneous system: $A \notin \Gamma^0$

Necessary condition for controllability

Full-rank condition

 Σ has full rank if its trace generates \mathfrak{g} .

Full-rank systems on H₃

• Single-input inhomogeneous system $\Sigma: A + uB$

A, B and [A, B] are linearly independent.

• Two-input homogeneous system $\Sigma : A + u_1B_1 + u_2B_2$

 B_1 , B_2 and $[B_1, B_2]$ are linearly independent.

State space equivalence

State space equivalence

 $\Sigma = (G, \Xi)$ and $\Sigma' = (G, \Xi')$ are state space equivalent if there exists a diffeomorphism $\phi : G \to G$ such that

$$T_g\phi\cdot\Xi(g,u)=\Xi'(\phi(g),u).$$

- Equivalence up to coordinate changes in the state space.
- One-to-one correspondence between the trajectories.

State space equivalence

Proposition

(G simply connected)

 $\Sigma=(\mathsf{G},\Xi)$ and $\Sigma'=(\mathsf{G},\Xi')$ are state space equivalent if and only if there exists $\psi\in \mathsf{Aut}(\mathfrak{g})$ such that

$$\psi \cdot \Xi(\mathbf{1}, u) = \Xi'(\mathbf{1}, u).$$

Proof sketch

- Suppose Σ and Σ' are equivalent.
 - Then \exists a diffeomorphism $\phi: \mathsf{G} \to \mathsf{G}$ such that

$$T_g\phi\cdot\Xi(g,u)=\Xi'(\phi(g),u).$$

- Can assume $\phi(\mathbf{1}) = \mathbf{1}$.
- Then

$$T_1\phi \cdot \Xi(\mathbf{1}, u) = \Xi'(\phi(\mathbf{1}), u)$$

= $\Xi'(\mathbf{1}, u)$.

State space equivalence

Proof sketch (cont.)

- $\bullet \ \phi$ preserves left-invariant vector fields and hence is a homomorphism.
- Thus $T_1\phi:\mathfrak{g}\to\mathfrak{g}$ is a Lie algebra automorphism.
- Suppose

$$\psi \cdot \Xi(\mathbf{1}, u) = \Xi'(\mathbf{1}, u).$$

- Then $\exists \phi : G \to G$ such that $T_1 \phi = \psi$.
- By left invariance

$$T_{g}\phi \cdot \Xi(g, u) = T_{g}\phi \cdot T_{1}L_{g} \cdot \Xi(\mathbf{1}, u)$$

$$= T_{1}L_{\phi(g)} \cdot T_{1}\phi \cdot \Xi(\mathbf{1}, u)$$

$$= T_{1}L_{\phi(g)} \cdot \Xi'(\mathbf{1}, u)$$

$$= \Xi'(\phi(g), u).$$

• Hence Σ and Σ' are state space equivalent.

Single-input inhomogeneous systems

Proposition

Any system $\Sigma : A + uB$ is state space equivalent to

$$\Sigma^{(1,1)}: E_2 + uE_3.$$

Proof

- $A = \sum_{i=1}^{3} a_i E_i$, $B = \sum_{i=1}^{3} b_i E_i$.
- Matrix representation

$$\left[\begin{array}{c|c} a_1 & b_1 \\ a_2 & b_2 \\ a_3 & b_3 \end{array}\right].$$

• Full-rank; require the linear independence of

$$A, B, [A, B] = (a_2b_3 - b_2a_3)E_1 \implies a_2b_3 - b_2a_3 \neq 0.$$

Hence

$$\psi_1 = \begin{bmatrix} -a_3b_2 + a_2b_3 & 0 & 0\\ 0 & b_3 & -b_2\\ 0 & -a_3 & a_2 \end{bmatrix}$$

is an automorphism such that

$$\psi_1 \cdot \left[\begin{array}{c|c} a_1 & b_1 \\ a_2 & b_2 \\ a_3 & b_3 \end{array} \right] = \left[\begin{array}{c|c} -a_1 a_3 b_2 + a_1 a_2 b_3 & -a_3 b_1 b_2 + a_2 b_1 b_3 \\ -a_3 b_2 + a_2 b_3 & 0 \\ 0 & -a_3 b_2 + a_2 b_3 \end{array} \right].$$

Likewise

$$\psi_2 = \begin{bmatrix} \frac{1}{(a_3b_2 - a_2b_3)^2} & \frac{-a_1}{(a_3b_2 - a_2b_3)^2} & \frac{-b_1}{(a_3b_2 - a_2b_3)^2} \\ 0 & \frac{1}{-a_3b_2 + a_2b_3} & 0 \\ 0 & 0 & \frac{1}{-a_3b_2 + a_2b_3} \end{bmatrix}$$

is an automorphism such that

$$\psi_2 \cdot \left[\begin{array}{c|c} -a_1 a_3 b_2 + a_1 a_2 b_3 \\ -a_3 b_2 + a_2 b_3 \\ 0 \end{array} \right| \left. \begin{array}{c|c} -a_3 b_1 b_2 + a_2 b_1 b_3 \\ 0 \\ -a_3 b_2 + a_2 b_3 \end{array} \right] = \left[\begin{array}{c|c} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{array} \right].$$

Two-input homogeneous systems

Proposition

Any system $\Sigma: A + u_1B_1 + u_2B_2$ is state space equivalent to exactly one of

$$\Sigma_{\gamma}^{(2,0)}: \gamma_1 E_2 + \gamma_2 E_3 + u_1 E_2 + u_2 E_3, \quad \gamma_1, \gamma_2 \in \mathbb{R}.$$

Proof

- $A = \sum_{i=1}^{3} a_i E_i$, $B_1 = \sum_{i=1}^{3} b_i E_i$, $B_2 = \sum_{i=1}^{3} c_i E_i$.
- Matrix representation

$$\left[\begin{array}{c|cc} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{array}\right].$$

• Full-rank; require the linear independence of:

$$B_1$$
, B_2 , $[B_1, B_2] = (-b_3c_2 + b_2c_3)E_1 \implies -b_3c_2 + b_2c_3 \neq 0$.

Hence

$$\psi_1 = \begin{bmatrix} -b_3c_2 + b_2c_3 & b_3c_1 & -b_2c_1 \\ 0 & -b_3 & b_2 \\ 0 & -c_3 & c_2 \end{bmatrix}$$

is an automorphism such that

$$\begin{split} \psi_1 \cdot \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} \\ &= \begin{bmatrix} -a_3b_2c_1 + a_2b_3c_1 - a_1b_3c_2 + a_1b_2c_3 \\ a_3b_2 - a_2b_3 \\ a_3c_2 - a_2c_3 \end{bmatrix} \begin{bmatrix} -b_1b_3c_2 + b_1b_2c_3 & 0 \\ 0 & -b_3c_2 + b_2c_3 \\ b_3c_2 - b_2c_3 & 0 \end{bmatrix}. \end{split}$$

Likewise

$$\psi_2 = \begin{bmatrix} \frac{1}{(b_3c_2 - b_2c_3)^2} & 0 & \frac{b_1}{(b_3c_2 - b_2c_3)^2} \\ 0 & 0 & \frac{1}{b_3c_2 - b_2c_3} \\ 0 & \frac{1}{-b_3c_2 + b_2c_3} & 0 \end{bmatrix}$$

is an automorphism such that

$$\begin{array}{lll} \psi_2 \cdot \left[\begin{array}{c|c} -a_3b_2c_1 + a_2b_3c_1 - a_1b_3c_2 + a_1b_2c_3 & 0 \\ a_3b_2 - a_2b_3 & 0 & -b_3c_2 + b_2c_3 \\ a_3c_2 - a_2c_3 & b_3c_2 - b_2c_3 & 0 \end{array} \right] \\ = \left[\begin{array}{c|c} \frac{-a_3b_2c_1 + a_2b_3c_1 + a_3b_1c_2 - a_1b_3c_2 - a_2b_1c_3 + a_1b_2c_3}{(b_3c_2 - b_2c_3)^2} & 0 & 0 \\ \frac{a_3c_2 - a_2c_3}{b_3c_2 - b_2c_3} & 0 & 1 \\ \end{array} \right] \\ = \left[\begin{array}{c|c} 0 & 0 & 0 \\ \gamma_1 & 1 & 0 \\ \gamma_2 & 0 & 1 \end{array} \right]. \end{array}$$

Two systems:

$$\boldsymbol{\Sigma}_{\gamma}^{(2,0)} = \left[\begin{array}{c|c} 0 & 0 & 0 \\ \gamma_1 & 1 & 0 \\ \gamma_2 & 0 & 1 \end{array} \right], \quad \boldsymbol{\Sigma}_{\gamma}^{\prime(2,0)} = \left[\begin{array}{c|c} 0 & 0 & 0 \\ \gamma_1' & 1 & 0 \\ \gamma_2' & 0 & 1 \end{array} \right].$$

Apply arbitrary automorphism to first system

$$\begin{bmatrix} hk - ji & l & m \\ 0 & h & i \\ 0 & j & k \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ \gamma_1 & 1 & 0 \\ \gamma_2 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \gamma_1 l + \gamma_2 m & l & m \\ \gamma_1 h + \gamma_2 i & h & i \\ \gamma_1 j + \gamma_2 k & j & k \end{bmatrix}.$$

• Set equal to second system:

$$\begin{bmatrix} \gamma_1 I + \gamma_2 m & I & m \\ \gamma_1 h + \gamma_2 i & h & i \\ \gamma_1 j + \gamma_2 k & j & k \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ \gamma'_1 & 1 & 0 \\ \gamma'_2 & 0 & 1 \end{bmatrix}$$

 \implies l=0, m=0, h=1, i=0, j=0, k=1 and so $\gamma_1=\gamma_1'$, $\gamma_2=\gamma_2'$.

Conclusion

- Complete classification
 - two-input inhomogeneous and three-input cases.
- State space equivalence is very strong
 - many equivalence classes.

Outlook

- Detached feedback equivalence
 - transformations in controls are allowed.