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Problem statement

SO(3) =
{

g ∈ R3×3 | g>g = 1, det g = 1
}

Group of rotations
Three-dimensional, connected, compact Lie group

Optimal control problems on SO(3)

Detached feedback equivalence of control systems

Classify cost-equivalent systems

Solve optimal control problems

Hamilton-Poisson systems
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The Lie algebra

so (3) =
{

A ∈ R3×3 | A> + A = 0
}

Basis:

E1 =

0 0 0
0 0 −1
0 1 0

 E2 =

 0 0 1
0 0 0
−1 0 0

 E3 =

0 −1 0
1 0 0
0 0 0


Commutator relations:

[E2,E3] = E1 [E3,E1] = E2 [E1,E2] = E3

Lie algebra automorphisms:

Aut(so(3)) ∼= SO(3)

R.M. Adams (RU) Cost-extended control systems on SO(3) RU Maths Seminar 5 / 34



Outline

1 Introduction

2 Control systems on SO(3)

3 Cost-extended systems

4 Hamilton-Poisson systems

5 Conclusion

R.M. Adams (RU) Cost-extended control systems on SO(3) RU Maths Seminar 6 / 34



LiCA systems

Left-invariant control affine system Σ = (SO(3),Ξ)

The dynamics

Ξ : SO(3)× R` → TSO(3), 1 ≤ ` ≤ 3

are left invariant

(g,u) 7→ Ξ(g,u) = g Ξ(1,u)

The parametrisation map

Ξ(1, · ) : R` → T1SO(3) = so(3)

is affine
u 7→ A + u1B1 + . . .+ u`B` ∈ so(3)

We assume B1, . . . ,B` are linearly independent
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Terminology

The trace Γ of the system Σ is

Γ = im(Ξ(1, · )) ⊂ so(3)

= A + Γ0

= A + 〈B1, . . . ,B`〉

Σ is called
homogeneous if A ∈ Γ0

inhomogeneous if A 6∈ Γ0

Σ has full rank provided the Lie algebra generated by Γ equals the
whole Lie algebra

Lie(Γ) = so(3)
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Controllability

Trajectory
Absolutely continuous curve g(·) : [0,T ]→ SO(3) satisfying a.e.

ġ(t) = Ξ(g(t),u(t))

Controllability
Σ = (SO(3),Ξ) is called controllable if for any g0,g1 ∈ SO(3) exists a
trajectory taking g0 to g1

Necessary conditions for controllability
SO(3) is connected
The trace Γ has full-rank

SO(3) is compact
Σ has full-rank ⇐⇒ Σ is controllable
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Detached feedback equivalence

Let Σ = (SO(3),Ξ) and Σ′ = (SO(3),Ξ′)

Σ and Σ′ are (locally) DF-equivalent if
there exist N,N ′ 3 1, and
a (local) diffeomorphism Φ = φ× ϕ : N ×R` → N ′ ×R`, φ(1) = 1,
such that

Tgφ · Ξ (g,u) = Ξ′ (φ(g), ϕ(u))

for all g ∈ N and u ∈ R`

Characterization
Two full rank systems are DF-equivalent iff

∃ψ ∈ Aut(so(3)) such that ψ · Γ = Γ′
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DF-equivalence on SO(3)

Proposition
Any full rank system on SO(3) is DF-equivalent to exactly one of the
systems

Ξ(1,1)
α (1,u) = αE1 + u1E2

Ξ(2,0)(1,u) = u1E1 + u2E2

Ξ(2,1)
α (1,u) = αE1 + u1E2 + u3E3

Ξ(3,0)(1,u) = u1E1 + u2E2 + u3E3

Here α > 0 parametrizes families of non-equivalent class
representatives
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Optimal control problems

Let Σ = (SO(3),Ξ)

An (invariant) optimal control problem is specified by

ġ(t) = g(t) Ξ(1,u(t))

g(0) = g0, g(T ) = g1, g0,g1 ∈ SO(3), T > 0 fixed

J (u(·)) =

∫ T

0
(u(t)− µ)Q(u(t)− µ)>dt → min, µ ∈ R`.

Here Q is a positive definite `× ` matrix.

Cost-extended system (Σ, χ)

Σ = (SO(3),Ξ)

χ : R` → R, u 7→ (u − µ)Q(u − µ)>

Boundary data (g0,g1,T ) specifies a unique problem
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Cost-extended systems

Cost-equivalence
(Σ, χ) and (Σ′, χ′) are C-equivalent ⇐⇒ ∃φ ∈ Aut(SO(3)) and an
affine isomorphism ϕ : R` → R`′ such that

T1φ · Ξ(1,u) = Ξ′(1, ϕ(u)) and χ′ ◦ ϕ = rχ

for some r > 0.

The diagrams

R`

Ξ(1,·)
��

ϕ
// R`′

Ξ′(1,·)
��

g
T1φ

// g′

R`

χ

��

ϕ
// R`′

χ′

��

R
δr

// R

commute
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Classification

TΣ

Given Σ = (SO(3),Ξ), let TΣ denote the group of feedback
transformations leaving Σ invariant

TΣ =
{
ϕ ∈ Aff(R`) : ∃ψ ∈ d Aut(SO(3)), ψ · Ξ(1,u) = Ξ(1, ϕ(u))

}
.

Proposition
(Σ, χ) and (Σ, χ′) are C-equivalent iff ∃ϕ ∈ TΣ such that χ′ = rχ ◦ ϕ
for some r > 0.

For χ : u 7→ (u − µ)>Q (u − µ) and ϕ : u 7→ Ru + x we have

(χ ◦ ϕ)(u) = (u − µ′)>R>Q R(u − µ′)

where µ′ = R−1(x − µ) ∈ R`.
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Two-input homogeneous systems

Proposition

Every (2,0) system is C-equivalent to (Σ(2,0), χ1
αβ) or (Σ(2,0), χ2

α),
where Σ(2,0) = (SO(3),Ξ(2,0)) and

χ1
αβ = (u1 − α1)2 + β(u2 − α2)2, α1, α2 ≥ 0, 0 < β < 1,

χ2
α = (u1 − α)2 + u2

2 , α ≥ 0.

Proof sketch
Every (2,0) system is DF-equivalent to Σ(2,0) = (SO(3),Ξ(2,0))
where

Ξ(2,0)(1,u) = u1E1 + u2E2

Calculate feedback transformations TΣ(2,0)
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Proof sketch cont.

In matrix form Ξ(2,0)(1,u) =

1 0
0 1
0 0


Checking the condition ψ · Ξ(2,0)(1,u) = Ξ(2,0)(1, ϕ(u)) givesa1 a2 a3

b1 b2 b3
c1 c2 c3

1 0
0 1
0 0

 =

1 0
0 1
0 0

[ϕ11 ϕ12
ϕ21 ϕ22

]

Thus c1 = c2 = 0

As ψ ∈ SO(3) =⇒ a3 = b3 = 0 and c3 = ±1

Therefore
TΣ(2,0) = {ϕ | ϕ ∈ O(2)}
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Proof sketch cont.

(Σ, χ) is C-equivalent to (Σ(2,0), χ0), for some

χ0 : u 7→ (u − µ)>Q (u − µ), Q =

[
a1 b
b a2

]
∃ϕ1 ∈ O(2) such that ϕ>1 Q ϕ1 = diag (γ1, γ2), γ1 ≥ γ2 > 0
Therefore

χ1(u) =
1
α1

(χ0 ◦ ϕ1)(u) = (u − µ′)>diag (1, β) (u − µ′)

where 0 < β ≤ 1, µ′ ∈ R2.
If β 6= 1, then diag (σ1, σ2) ∈ O(2), σ1, σ2 ∈ {−1,1}, are the only
transformations left preserving the quadratic form diag (1, β).
Thus χ1

αβ = (u1 − α1)2 + β(u2 − α2)2, α1, α2 ≥ 0, 0 < β < 1
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Proof sketch cont.

If β = 1, then any ϕ ∈ O(2) preserves diag (1,1)

∃α ≥ 0 and θ ∈ R such that µ′1 = α cos θ and µ′2 = α sin θ

Thus for ϕ2 =

[
cos θ − sin θ
sin θ cos θ

]
we have

χ3(u) = (χ2 ◦ ϕ2)(u) =

(
u −

[
α
0

])>(
u −

[
α
0

])
Therefore, every such system is C-equivalent to

(Σ(2,0), χ2
α) :

{
Ξ(2,0)(1,u) = u1E1 + u2E2

χ2
α(u) = (u1 − α)2 + u2

2 , α ≥ 0.

Each value of α defines a distinct equivalence class
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Optimal control problems

Question
How do we solve a given optimal control problem? We have

A family (Ξ(·,u))u∈R` of dynamical systems
A cost function χ : u 7→ (u − µ)>Q(u − µ) we want to minimize

Consider (Σ, χ)

Construct a family of Hamiltonian functions on T ∗SO(3)

Hλ
u (ξ) = λχ(u) + ξ(Ξ(g,u)), λ ∈ {−1

2 ,0}

Left-trivialize cotangent bundle, i.e., T ∗SO(3) ∼= SO(3)× so(3)∗

Then
Hλ

u (g,p) = λχ(u) + p(Ξ(1,u))

which is an element of C∞(so(3)∗).
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Neccessary conditions

Pontryagin maximum principle (PMP)
Let (ḡ(·), ū(·)) be a solution of an optimal control problem on [0,T ].
Then ∃ ξ(·) : [0,T ]→ T ∗SO(3), with ξ(t) ∈ T ∗ḡ(t)SO(3) and λ ≤ 0
such that

(λ, ξ(t)) 6≡ (0,0) (1)

ξ̇(t) = ~Hλ
ū(t)(ξ(t)) (2)

Hλ
ū(t)(ξ(t)) = max

u
Hλ

u (ξ(t)) = constant. (3)

Trajectory ḡ(·) is a projection of the integral curve ξ(·) of ~Hλ
ū(t)

Any pair (g(·),u(·)) satisfying the PMP is called a
trajectory-control pair
We only consider the case when λ = −1

2 (normal extremals)
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Poisson structure

Structure on so(3)∗

p = p1E∗1 + p2E∗2 + p3E∗3 =
[
p1 p2 p3

]
∈ so(3)∗

Lie-Poisson bracket of F ,G ∈ C∞(so(3)):

{F ,G} (p) = −p ([dF (p),dG(p)])

Hamiltonian vector field: ~H[F ] = {F ,H}

Quadratic Hamilton-Poisson system (so(3)∗−,H)

H : p 7→ pA + pQp>, A ∈ so(3)

Equations of motion: ṗi = −p ([Ei ,dH(p)])
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Example

Consider the family of cost-extended systems

(Σ(2,0), χ2
α) :

{
Ξ(2,0)(1,u) = u1E1 + u2E2

χ2
α(u) = (u1 − α)2 + u2

2 , α ≥ 0.

We have Hu(p) = −1
2

(
(u1 − α)2 + u2

2
)

+ p(u1E1 + u2E2)

Then

∂H
∂u1

= −(u1 − α) + p1 = 0 =⇒ u1 = p1 + α

∂H
∂u2

= −u2 + p2 = 0 =⇒ u2 = p2

The optimal Hamiltonian is given by

H(p) = αp1 + 1
2(p2

1 + p2
2)
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Relation to Hamilton-Poisson systems

Recall that Ξ(1,u) = A +
∑`

i=1 uiBi

Let B be the 3× ` matrix where the i th column of B is the
coordinate vector of Bi in the basis {E1,E2,E3}. Then
Ξ(1,u) = A + Bu

Proposition
Any ECT (g(·),u(·)) of (Σ, χ) is given by ġ = Ξ(g(t),u(t)) and

u(t) = Q−1B>p(t)> + µ

Here p(·) : [0,T ]→ so(3)∗ is an integral curve of the Hamilton-Poisson
system on so(3)∗− specified by

H(p) = p(A + Bµ) +
1
2

pBQ−1B>p>.
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Affine equivalence

Definition
Systems G and H are A-equivalent if

∃ affine automorphism ψ
such that ψ∗~G = ~H

Proposition
The following systems are equivalent to H:

H ◦ ψ : where ψ - linear Poisson automorphism
H ′(p) = pA + p(rQ)p>: where r 6= 0
H + C : where C - Casimir function
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Classification on so (3)∗−

H(p) = pQp>

1
2p2

1

p2
1 + 1

2p2
2

Conditions
α1, α2 > 0
α1 ≥ α3 > 0
α1 > |α4| > 0 or
α1 = α4 > 0

H(p) = pA + pQp>

α1p1
1
2p2

1

p2 + 1
2p2

1

p1 + α1p2 + 1
2p2

1

α1p1 + p2
1 + 1

2p2
2

α1p2 + p2
1 + 1

2p2
2

α1p1 + α2p2 + p2
1 + 1

2p2
2

α1p1 + α3p3 + p2
1 + 1

2p2
2

α1p1 +α2p2 +α4p3 + p2
1 + 1

2p2
2
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Example

Consider (Σ(2,0), χ2
α) for α > 0

The optimal Hamiltonian H(p) = αp1 + 1
2(p2

1 + p2
2) is equivalent to

H1
1 (p) = p2 + 1

2p2
1

Indeed, let

ψ : p 7→ p

 0 0 1
−α 0 0
0 α 0

+

 0
1− α2

0


Then we have ψ∗~H = ~H1

1 ; or more specifically,

(Tψ · ~H)(p) =

 −αp2
αp2p3

α (α + p1) p3

 = (~H1
1 ◦ ψ)(p)

R.M. Adams (RU) Cost-extended control systems on SO(3) RU Maths Seminar 30 / 34



An important relationship

Proposition
(Σ,Ξ) and (Σ′,Ξ′) are C-equivalent

⇓

associated H and H ′ are A-equivalent

Remark
The converse is not true
However, we can still solve for the optimal controls of any given
cost-extended system
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Counter example

(Σ(2,0), χ2
0)

Ξ(2,0)(1,u) = u1E1 + u2E2

χ2
0 :

∫ T
0 (u1(t)2 + u2(t)2)dt → min

∴ H2(p) = 1
2(p2

1 + p2
2)

(Σ(3,0), χ1
β)

Ξ(3,0)(1,u) = u1E1 + u2E2 + u3E3

χ1
β :

∫ T
0 (u1(t)2 + u2(t)2 + βu3(t)2)dt → min, 0 < β < 1

∴ H3(p) = 1
2(p2

1 + p2
2 +

1
β

p2
3)

H2 and H3 are both equivalent to H(p) = 1
2p2

1
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Conclusion

Summary
Related the notions of

DF-equivalence, C-equivalence, and A-equivalence
Obtained each type of classification for SO(3)

Related work
Final integration procedure on SO(3)

Control systems on SO(4)

Note that so(4) ∼= so(3)⊕ so(3)
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