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Introduction

@ invariant control systems on 3D Lie groups

@ invariant optimal control problems (with quadratic cost)

@ classify cost-extended systems

@ determine extremal controls

@ calculate extremal trajectories
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Invariant optimal control

Invariant control systems

Drift-free left-invariant control system ¥ = (G,

state space G

@ matrix Lie group with Lie algebra g
dynamics =: G xRt —» TG
o left-invariant: =(g,u) = g =(1, v)
@ parametrization map:
E(l,-):RZ%g, u— uBr+ -+ wBy
o trace [ = (Bi,...,By) C g is ¢ dimensional
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Invariant optimal control

Trajectories and controllability

Admissible controls and trajectories

@ admissible control: piecewise cont. curve u(-) : [0, T] — R*

@ trajectory corresponding to u(-): abs. cont. curve g(-) : [0, T] — G
such that

g(t) ==(g(t), u(t)) fora.e. t €0, T]

@ (g(-),u(-)) is a trajectory-control pair

Controllability

@ 2 is controllable if any two points can be joined by a trajectory

@ necessary and sufficient: trace ' generates g

Restrict to controllable systems )
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Invariant optimal control

Equivalence of control systems

Detached feedback equivalence

Y is DF-equivalent to ¥’ if 3 ¢ € Diff(G), ¢ € GL(R?) such that

Ted-Z(g,u) = ='(d(g), p(u),  for every g € G, u € R’
@ trajectories of DF-equivalent systems in 1-to-1 correspondence

| \

Algebraic characterization

Y and Y’

o — /
DF-equivalent — 3¢ € Aut(G) such that Ty -T =T
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Invariant optimal control

Optimal control

Invariant optimal control problem

@ left-invariant control system ¥ = (G, =)

@ boundary data (initial state gp, final state gy, terminal time T > 0)
@ quadratic cost: x(u) = u'Qu, ue Rl Q e R is PD

g=g(nB1+ -+ ubBy)
g(0) = go, g(T) =g1, T > 0 fixed

i (OCP)
J[u(-)]:/o () et = min

Minimize cost functional J over trajectory-control pairs (g(-), u(-)) of
subject to boundary data

v

Barrett, Biggs, Remsing (RU) Control Systems on SE(1, 1) ECC 2014 7/15



Invariant optimal control

Pontryagin lift

Lifting to the cotangent bundle

@ lift the problem to the cotangent bundle TG = G x g*
@ using Pontryagin Maximum Principle:

e G-invariant Hamiltonian function H: T*G — R
o induced Hamilton-Poisson system (g* , H)

Hamilton-Poisson systems on g

@ Lie-Poisson bracket: {F, G}(p) = —(p, [dF(p),dG(p)])
e Hamiltonian vector field H = {-, H}

Proposition
The (normal) extremal controls of an optimal control problem (OCP) are
linearly related to the integral curves of (g* , H)
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Invariant optimal control

Cost-extended systems

Associate to each optimal control problem a cost-extended system (X, x)

v

Cost equivalence

(X, %) is C-equivalent to (¥, x’) if 3 ¢ € Aut(G), ¢ € GL(R?) such that
Ted-=(g,u) ==(¢(g),p(u)) and X' o@=rx forsomer >0

@ optimal (resp. extremal) trajectory-control pairs of C-equivalent
systems in 1-to-1 correspondence

Characterization (same underlying control system)
(X,x) and (X, x’) are C-equivalent <= 3 ¢ € GL(R) such that
@ ¢ preserves X: 3 ¢ € Aut(G) such that T1¢ - =(1,u) = =(1, p(u))

@ X' =rxoy forsomer >0
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SE(1,1)

The semi-Euclidean group SE(1,1)

Lie group and Lie algebra

1 0 0 0 0O
SE(1,1): |{x cosh® sinh@ se(1,1): |x 0 6
y sinhf cosh@ y 6 0

@ group of isometries of (R?,®), where x ®y = —x1y1 + X2)2

@ connected and simply connected
Standard basis

0 0O 0 0O 0 0O
Ez={1 0 O E;=1{0 0 O Es=1|0 0 1
0 0O 1 00 010

[Ez, E3] = *El [E3, E1] = E2 [El, E2] =0 J
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Classification

Classification of cost-extended systems

Cost-extended systems on SE(1, 1)

Let (X, x) be a controllable drift-free cost-extended system.
o If X is two-input, then (X, x) is C-equivalent to

{ 5(2’0)(1, u) =wmE + wkE
\20) = & +

o If X is three-input, then (X, x) is C-equivalent to a system

(0<A<1)

=G0, u) = By + B + n3Es
Xg\3’0)(u) = U% —I'- )\U% + U§
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Classification

Proof sketch (two-input)

DF-equivalence
Every two-input system X = (SE(1,1),=) is DF-equivalent to the system
(20 — (SE(1,1),=?9),  =C01 u) = nE + wEs

| \

C-equivalence

o every cost-extended system is C-equivalent to a system (X(20) ),
Tl B
u)=u u
x(u) [ 3 az}
1 _5:| [\/ ajan—[2
$2 =

@ then 1 = [ @ || ax 0 preserve ¥ (20) and
0 1 0 1

0 1 o —
(oo =uT [§ Y u=r@O), =2

v
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Extremal controls

Extremal controls of two-input system

A
@ (normal) extremal controls:

up = p1, U2 = p3
@ p(-) int. curve of
HEO(p) = 3(pF + P3)

.

Equations of motion

p1 = p2p3
p2 = p1p3
p3 = —p1p2

C(p) = p? — p3 is a Casimir

) (b) C(p) =0
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Extremal controls

Integration

Integral curves p(-) of H20)
Let HZ9)(p(0)) = hy > 0 and C(p(0)) = ¢ > 0.
o If ¢p > 0, then there exist tp € R and o € {—1,1} such that
p(t) = p(t + tp) for every t
@ If g =0, then there exist top € R and 01,02 € {—1,1} such that

p(t) = g(t + to) for every t
pi(t) = cQdn(Q2t, k) g1(t) = 0182 sech(Q2t)
p2(t) = —okQcn(Qt, k) Go(t) = —o102Q sech(Q2t)
p3(t) = kQsn(Q2t, k) g3(t) = 02 tanh(Qt)

Q:m k:\/l—CO/Q J
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Conclusion

Sub-Riemannian structures

@ invariant SR structure associated to every cost-extended system

@ thus, on SE(1,1) (up to isometric group automorphisms):

o sub-Riemannian structures: Dy = (Eq, E3), g1 = [(1) (1)
1 0 0
e Riemannian structures: g{‘ =10 A O
0 0 1
Outlook

@ determine optimal trajectories

@ classification of cost-extended systems with drift
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