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Introduction

Mechanical systems (from the Lagrangian point of view)

Lagrangian function:

L(q, v) = T (q, v)− U(q)

= (“kinetic energy”)− (“potential energy”)

kinetic energy: from pseudo-Riemannian metric

potential energy: constant for invariant systems

Hamilton’s Principle

extremal curves are critical points of

L [γ] =

∫ b

a
L(γ(t), γ̇(t)) dt

extremals are “shortest” (= “straightest”) curves
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Adding constraints

What are constraints?

classically:
fk(q, v) = 0, k = 1, . . . ,m

geometrically:
m-dim submanifold of TM

Types

integrable: constraints on
position

nonintegrable: constraints
on velocity

Dynamics of systems with nonintegrable constraints

nonholonomic mechanics
Lagrange-D’Alembert Principle
extremals are “straightest” curves
correct approach for physical systems obeying Newton’s law

vakonomic mechanics
variational principle
extremals are “shortest” curves
main examples: sub-Riemannian geometry, optimal control theory
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Tangent and cotangent bundle

Notation

G Lie group

g = T1G Lie algebra

g∗ = T ∗1 G dual of Lie algebra

Tangent bundle TG

trivialisable: TG ∼= G× g

projection:

τG : (g ,X ) 7→ g

left-invariant vector field:

AL(g) = (g ,A), A ∈ g

Cotangent bundle T ∗G

trivialisable: T ∗G ∼= G× g∗

projection:

πG : (g , p) 7→ g

left-invariant 1-form:

pL(g) = (g , p), p ∈ g∗
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Second tangent bundle

Second tangent bundle T (TG)

trivialisable: T (TG) ∼= T (G× g) ∼= (G× g)× (g× g)

two natural projections (i.e., two natural bundle structures):

τTG : (g ,A;X ,B) 7→ (g ,X )

T τG : (g ,A;X ,B) 7→ (g ,A)

canonical flip κ : (g ,A;X ,B) 7→ (g ,X ;A,B)

Vector fields on TG

Z ∈ X(TG), Z (g ,X ) = (g ,V (g ,X );X ,W (g ,X ))

determined by two functions V ,W : G× g→ g

Z is left invariant if

Z (g ,X ) = (g ,V (X );X ,W (X ))
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Second order differential equations

Semisprays

A smooth map Z : TG→ T (TG) is called a semispray if

τTG ◦ Z = id and T τG ◦ Z = id

geometric representation of second-order ODE

Z (g ,X ) = (g ,X ;X , z(g ,X ))

if g(·) : [a, b]→ G, then

ġ(t) = (g(t),X (t)) (for some X (·) : [a, b]→ g)

g̈(t) = (g(t),X (t);X (t), Ẋ (t))

g(·) is a solution of a semispray Z if g̈(t) = Z (ġ(t)), i.e.,

Ẋ (t) = z(g(t),X (t))
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The Poincaré-Cartan 2-form

let G be a pseudo-Riemannian metric:

Gg : TgG× TgG→ R is a nondegenerate bilinear form

Induced 2-form ω : X(TG)× X(TG)→ C∞(TG)

ω is a symplectic form (i.e., closed and nondegenerate)

musical isomorphisms:

ω[ : X(TG)→ Ω1(TG), X 7→ ω(X , ·)
ω] : Ω1(TG)→ X(TG), ω] = (ω[)−1
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Invariant mechanical systems

Mechanical system (G,G)

Configuration space G

n-dim connected Lie group with Lie algebra g

Lagrangian function L : TG→ R, L(g ,X ) = 1
2Gg ((g ,X ), (g ,X ))

G is a pseudo-Riemannian metric:

Gg : TgG× TgG→ R is a nondegenerate bilinear form

G is left invariant: Gg ((g ,X ), (g ,Y )) = G1(X ,Y )

Euler-Lagrange vector field Ξ ∈ X(TG)

Ξ = ω](dL)

Ξ is a (left-invariant) semispray: Ξ(g ,X ) = (g ,X ;X , ξ(X ))

extremal curves: solutions of Ξ ( = pseudo-Riemannian geodesics)
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Explicit expression for the E-L vector field

Adjoint map

adA : g→ g, adA B = [A,B] (A ∈ g)

let ad>A be the G1-adjoint of adA, i.e.,

G1(ad>A B,C ) = G1(B, adA C ), A,B,C ∈ g

Euler-Lagrange vector field

Ξ(g ,X ) = (g ,X ;X , ξ(X )), ξ(X ) = ad>X X

let g(·) : [a, b]→ G with ġ(t) = (g(t),X (t))

g(·) is an extremal ⇐⇒ Ẋ (t) = ad>X (t) X (t).
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Invariant nonholonomic mechanical system (G,D,G)

Ingredients

Configuration space G

n-dim connected Lie group with Lie algebra g

Constraint distribution D = {Dg}g∈G
left invariant: Dg = g d, where d ⊂ g is an r -dim subspace

completely nonholonomic: d generates g

Lagrangian function L : TG→ R, L(g ,X ) = 1
2Gg ((g ,X ), (g ,X ))

G is a left-invariant pseudo-Riemannian metric

Regularity condition

ι∗G1 : d× d→ R is nondegenerate

ι : d→ g is the inclusion map
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Lagrange-D’Alembert vector field Λ ∈ X(TG)

Notation

d = 〈A1, . . . ,Ar 〉 d◦ = 〈p1, . . . , pn−r 〉
D = 〈AL

1, . . . ,A
L
r 〉 D◦ = 〈p1L, . . . , pn−rL 〉 F ◦ = (τG)∗D◦

Definition

(ω[(Λ)− dL)
∣∣

D ∈ F ◦ and Λ|D ∈ TD

unique (by regularity)

Λ is a (left-invariant) semispray on D:

Λ(g ,X ) = (g ,X ;X , λ(X )) for every (g ,X ) ∈ D

nonholonomic extremals: curves g(·) in G such that

ġ(t) ∈ Dg(t) and g(·) is a solution of Λ
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Explicit expression for L-D vector field

Notation

 : d◦ → g∗ inclusion map

∗ : g→ (d◦)∗ dual of inclusion map

K : d◦ × d◦ → R restriction of the cometric G−11 to d◦

Lagrange-D’Alembert vector field on D

Λ(g ,X ) = (g ,X ;X , λ(X )), λ(X ) = ξ(X )− G]
1((µ(X )))

ξ(X ) = ad>X X and µ(X ) = (K ] ◦ ∗)(ξ(X ))

Orthogonal decomposition g = d⊕ d⊥

projections P : g→ d and Q : g→ d⊥

λ(X ) = P(ξ(X )) for X ∈ d
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Equivalence

Definition

Two systems (G,D,G) and (G′,D ′,G ′) are equivalent if there exists a Lie
group isomorphism φ : G→ G′ such that

g(·) is an extremal

of (G,D,G)
⇐⇒

(φ ◦ g)(·) is an extremal

of (G′,D ′,G ′)

most general form of equivalence preserving extremals and Lie group
structure
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Characterisation and sufficient conditions

Characterisation

(G,D,G)

is equivalent to

(G′,D ′,G ′)

⇐⇒
∃ isomorphism φ : G→ G′ such that

φ∗D = D ′ and (Tφ)∗Λ|D = Λ′
∣∣

D′

⇐⇒
∃ isomorphism φ : G→ G′ such that

T1φ · d = d′ and (T1φ)∗λ|d = λ′
∣∣
d′

Sufficient condition

If there exists a Lie group isomorphism φ : G→ G′ such that

T1φ · d = d′ and G1(A,B) = rG ′1(T1φ · A,T1φ · B) (A,B ∈ g)

for some r 6= 0, then (G,D,G) and (G′,D ′,G ′) are equivalent
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Three-dimensional Lie groups

Lie algebra Connected matrix groups

1. R3 Abelian R3, R2 × T, R× T2,T3

2. aff(R)⊕ R Aff(R)0 × R, Aff(R)0 × T
3. h3 Heisenberg H3

4. g3.2 G3.2

5. g3.3 G3.3

5. se(1, 1) semi-Euclidean SE(1, 1)

7. gh3.4 Gh
3.4

8. se(2) Euclidean SE(2), SEn(2), S̃E(2)

9. gh3.5 Gh
3.5

10. so(2, 1) pseudo-orthogonal SO(2, 1)0, SL(2,R)

11. so(3) orthogonal SO(3), SU(2)
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The Heisenberg group H3

H3 :

1 y x
0 1 z
0 0 1

 h3 :

0 y x
0 0 z
0 0 0

 = xE1 + yE2 + zE3

Classification on H3

Every system is equivalent to exactly one of the systes (H3,D,Gi ), where
d = span{E2,E3} and

G1(1) =

0 1 0
1 1 0
0 0 1

 G2(1) =

0 1 1
1 0 1
1 1 0


G3(1) =

1 1 0
1 0 1
0 1 0

 G4(1) =

1 0 0
0 1 0
0 0 1


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Equations of motion

Lagrange-D’Alembert vector fields for representatives

λ1(X ) =

 0
−x2x3
(x2)2

 λ2(X ) =

 0
x2(x2 + x3)
−x3(x2 + x3)


λ3(X ) =

 0
(x2)2

−x2x3

 λ4(X ) =

0
0
0


Finding extremals

let g(·) be an extremal, with ġ(t) = (g(t),X (t))

first solve the “reduced” equations of motion Ẋ (t) = λ(X (t))

need to recover g(·) from X (·); this amounts to solving the
“reconstruction” equation ġ(t) = g(t)X (t)
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Proof sketch

every 2-dim subspace of h3 may be brought to d = span{E2,E3}
hence every system equivalent to (H3,D,G), where

G1 =

a1 b1 b2
b1 a2 b3
b2 b3 a3


by regularity: a2a3 − b23 6= 0

Symmetries of d

φ ∈ Aut(H3) such that

T1φ · d = d
⇐⇒ T1φ =

yw − vz 0 0
0 y v
0 z w


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Proof sketch, cont’d

suppose a2 6= 0; then

ψ1 =


√

a2a3−b23
a2

0 0

0

√
a2a3−b23
a2

−b3
a2

0 0 1

 , ψ>1 G1ψ1 =

a′1 b′1 b′2
b′1 1 0
b′2 0 1


if one of b′1, b′2 nonzero (say, b′1 6= 0), then

ψ2 = 1√
b′1

2+b′2
2

1 0 0
0 b′1 −b′2
0 b′2 b′1

 , (ψ1ψ2)>G1(ψ1ψ2) =

a′′1 1 0
1 1 0
0 0 1


if b′1 = b′2 = 0, then ψ>1 G1ψ1 = diag(a′1, 1, 1)
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Proof sketch, cont’d

case a2 = 0 leads to representatives G2, G3 and G4

Recap (d = 〈E2,E3〉)

G1(1) =

0 1 0
1 1 0
0 0 1

 G2(1) =

0 1 1
1 0 1
1 1 0


G3(1) =

1 1 0
1 0 1
0 1 0

 G4(1) =

1 0 0
0 1 0
0 0 1


complete result by verifying none of the four representatives are
equivalent to each other
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The special orthogonal group SO(3)

SO(3) :
g>g = 1

det(g) = 1
so(3) :

 0 −z y
z 0 −x
−y x 0

 = xE1 + yE2 + zE3

Classification

Every system is equivalent to (SO(3),D,G), where d = span{E1,E2} and
G1 is exactly one of the following: 1 0 α1

0 β α2

α1 α2
α2
1+α

2
2

β


1 0 0

0 β α
0 α 0

 1 0 α
0 β 0
α 0 0

  1 0 α′1
0 −1 α′2
α′1 α′2 0


1 0 α

0 −1 α
α α 1

 1 0 α
0 −1 0
0 α 0

 1 0 α
0 1 0
α 0 0

 1 0 0
0 1 0
0 0 1


α1, α2 > 0 α′

1 > α′
2 > 0 β ∈ (−1, 0) ∪ (0, 1)
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The unconstrained case

Proposition

The following statements are equivalent:

the E-L vector field is “trivial”: Ξ(g ,X ) = (g ,X ;X , 0)

the extremals are the one-parameter subgroups

t 7→ g0 exp(t X0), g0 ∈ G, X0 ∈ g

X ⊥ [X ,Y ] for every X ,Y ∈ g

G is right invariant (hence bi-invariant)

Three-dimensional matrix Lie groups

Only semisimple groups (SO(3), SU(2), SO(2, 1)0 and SL(2,R)) admit
such a system
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The constrained case

Proposition

The following statements are equivalent:

the L-D vector field is “trivial”: Λ(g ,X ) = (g ,X ;X , 0)

the nonholonomic extremals are the one-parameter subgroups

t 7→ g0 exp(t X0), g0 ∈ G, X0 ∈ d

X ⊥ [X ,Y ] for every X ,Y ∈ d

Sufficient conditions

G is bi-invariant

P([X ,Y ]) = 0 for every X ,Y ∈ d (necessary cond. for dim(d) = 2)
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Existence and uniqueness

Uniqueness

Given D on G, there exists (up to equivalence) at most one metric on G
such that (G,D,G) has trivial L-D vector field

Existence?

R3, G3.3 admit no compl. nonhol. D, hence no system with trivial Λ

every other 3D Lie group admits a trivial system

conditions on (G,D,G) for existence of a trivial system?
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Conclusion

Affine connection approach

Levi-Civita connection of (G,G) induces a connection ∇ on D

nonholonomic extremals: ∇ġ(t)ġ(t) = 0

can define curvature i.t.o. ∇

Outlook

equivalence under diffeomorphisms (and/or isometries)

determine differential invariants

consider affine constraints: D is an affine distribution
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