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Heisenberg group Hj

Matrix representation

1 x x
Hy = 0 1 x3 |X1,X2,X3€R
0 0 1

H3 is a matrix Lie group:

e Closed subgroup of GL(3,R) c R3*3
— is a submanifold of R3*3
— group multiplication is smooth

@ Hs is simply connected.

o Can be linearized — yields Lie algebra h3 = T1H3
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Heisenberg Lie algebra h3 and dual Lie algebra b3

Lie algebra b,

@ Matrix representation

0 x x1
hs = 0 0 x3 | X1,X2,x3 €ER
0 0 O
@ Standard basis
0 01 010 0 0O
Et=1(0 0 0Of, E;,=|(0 0 0Of, Es=(0 0 1
0 0O 0 0O 0 0O

@ Commutator relations
[E17 E2] = 07 [E17 E3] = Oa [E27 E3] = E.

Dual Lie algebra b3
Dual basis denoted by (E})?_;. Each E; defined by (E}, E;)=6j;,

ij=1,23.

V.
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The automorphism group of b3

Lie algebra automorphism

Map % : h3 — b3 such that
@ 1 is a linear isomorphism
@ 1) preserves the Lie bracket: ¢¥[X, Y] = [¢X,¢Y].

| A\

Proposition
The automorphism group of h3 is given by

VLoWw3 — vsWe Vi Wi
Aut(hz) = 0 vo£ wa| | vi,vo,va,wa, wo, w3 ER, vowz — vaun £ 0 5 .

0 V3 w3

v
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Lie-Poisson spaces

Lie-Poisson structure

A Lie-Poisson structure on b} is a bilinear operation {-, -} on C*°(h3) such
that:

Q (C>(h3%), {-,-}) is a Lie algebra

@ {-,-} is a derivation in each factor.

v

{F,G} (p) = —<p, [dF(p),dG(p)]>

for pe b3 and F,G € C*=(h3).

A\

Heisenberg Poisson space
Poisson space (b3, {-,-}) denoted h3_.
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Hamiltonian vector fields and Casimir functions

Hamiltonian vector field H

To each H € C*°(h3), we associate a Hamiltonian vector field H on b3
specified by .
H[F] = {F, H}.

v
Casimir function

A function C € C*°(h3) is a Casimir function if {C, F} = 0 for all
F € C>(b3).

Proposition

C(p) = p1 is a Casimir function on b3_.
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linear Poisson automorphisms of h3_

Linear Poisson automorphism
A linear Poisson automorphism is a linear isomorphism W : h3 — b3 such
that

{F,G}oV ={FoVW GoV}
for all F, G € C*(bh3).

Proposition
The group of linear Poisson automorphisms of h3_ is

Vow3 — V3w Vi W
pp 0 oo w| vy, Vo, v3, Wi, we, w3 € Ry vows — vaws #£ 0
0 vz W3
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Outline

@ Control systems on H3
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Control systems

Left-invariant control affine system

g=g=1,u)=g(A+w1Bi+---+ wBy), g€Hs, u e RE,

A, Bi,...,Bs € bs.

Admissible controls: u(-) : [0, T] — R’
Trajectory: absolutely continuous curve
g(:): [0, T] — Hs
such that g(t) = g(t) = (1, u(t)) for almost every t € [0, T].
Parametrization map: =(1,-) : Rf — b3.
Trace: T=A+T%= A+ (By,...,By).

Homogeneous system: A € I,

Inhomogeneous system: A ¢ I

v
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Controllability

Definition

A system is controllable if for any gp, g1 € H3 there exists a trajectory
g(-) : [0, T] — Hs such that

g(0)=g1 and g(T)=g.

Full-rank condition

Y = (H3,=) has full rank if its trace T = A+ T% = A4 (By, ..., By)
generates b3 i.e.
Lie(T) = bs.

Neccessary conditions for controllabilty

@ Hs3 is connected
@ [ has full rank.
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Detached feedback equivalence

Y = (H3,=) and ¥’ = (H3,=') are detached feedback equivalent if 3
¢ : Hs — Hs and ¢ : R — R? such that

Tep-=(g,u) = ='(p(g), p(u)).

Y and ¥’ are detached feedback equivalent if an only if

Ti¢-Z(1,u) =='(1,p(u)) < ¢ -T=T"

.

Proposition
Any 2 input homogeneous system on Hs is detached feedback equivalent
to the system

5(2’0)(1, u) =wmE + wEs.

v
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Outline

© Cost-extended control systems
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Cost-extended control systems

Optimal control problem

o ¥ = (Hs,3) - (
gzg:(l,u), g€H3aUGR-

o Boundary data

g(0) =go0, g(T)=g1, &o,8 €Hs, T>0.
@ Cost functional

T
j/ (u(t)—u)TQ(u(t)—u)dt—> min, e R’
0

Q positive definite £ x £ matrix.

Cost-extended system (X, x)
e ¥ =(Hs,=)
o Cost function x : R - R
x(u) = (u— )" Q(u— p)
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Cost equivalence

Cost equivalence

(X,x) and (X, x’) are cost equivalent iff 3¢ € Aut(Hs) and ¢ : R¢ — R¢
such that

T16-Z(1,u) =='(1,¢(u)) and x'o@=rx

for some r > 0. )

@ The diagrams

R 5 RY R! - R”
I R
b3 — b3 R——R
commute. y
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Cost equivalence

Corollary

If ¥ and ¥’ are detached feedback equivalent then (X, x o ) and (X', x)
are cost equivalent.

Feedback transformations leaving ¥ = (H3, =) invariant

T = {¢ € Aff(RY) : I € dAut(H3), v - =(1,u) = Z(1, p(u))}.

Proposition

(X, x) and (X, x’) are cost equivalent iff 3p € Ty such that X' = ryo¢p
for some r > 0.

r(xo@)(u) = r(u— ) " Qp(u—u)
for ' = ().

v
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Classification

Any controllable two-input homogeneous cost-extended system on Hs is
C-equivalent to exactly one of

_ =(1,u) = 1 E E:
(z’ia) : _( 7u) U]_ 2 + U2 3
Xo = (11 —a)?>+u3, a>0.

Each « parametrises a distinct family of class representatives.

Proof sketch (1/4)

o Any (2,0) system on Hj3 is detached feedback equivalent ¥ = (Hs, =).

@ Determine 5.
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Proof sketch (2/4)

@ In matrix form

vowz —wvawr vi wy| [0 O vi wp
v-=(1,u) = 0 vo wol| |1 O = |wv w
0 v w3 1 V3 w3

@ Also in matrix form

(L, p(u)) =

= |11 Y12
©21 P22 021 02

o = O

0 0 0
0 [@11 9012]
1

® w3 — V3w #0 = 11922 — 21912 #0 = T3 = GL(2,R).
@ Recall
xop(u) = (u—p) " Qp(u—p)
for p/ = o™ ().

v
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Proof sketch (3/4)

with a;, a», ajar — b? > 0.

@ Now )
al b
b a2_

@ And so
b2

#1 b
/ 2
as 31—2—2

Il
S

@ Such that
1

(voen)(e) = (=) |3

e O(2) C 75 and if p € O(2) then " [0 1

e Also p € 0(2) «—= 1€ 0(2).

(])_:| (U - /J’I)7 MI € Rz‘

10 10]

]SO:[O 1
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Proof sketch (4/4)

/
r_ %
o Let ' = [0/2] .
o Jpyt € 0(2) such that o, (1) = [

i

@ As a matrix u =
uz

] and so

(vo lorowa)(u) = (w= o3 )T |5 3] (0= e0)

Bl

= (1 — o)’ + 13 = Xa-

@ Verify that Y, 0 ¢ # ryu for any a # o/, r > 0.
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Hamiltonian function

Optimal control problem

g=g(uiEy + wmEy), ge€H;s
g(0)=go and g(T)=g1, go,&1€H3 T>0
J

= /0 (u1(t) — @)® + u3(t) = min, > 0.

@ Associate a Hamiltonian function on T*H3z = H3z x h3:
2(5) _7X( )+§(g§(17 U)), 5 = (g,p) S T*H3
= —>x(u) + p(=(1, uv))

= —-X(u) + (P Ef + p2E5 + p3E3, i1 B> + 1p )

=N =N

1
= —§(u1 —a)® - Eug + u1po + U2 p3.
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Pontryagin maximum principle

Maximum principle

Let (g(-), @(-)) be a solution to our optimal control problem on [0, T].
Then 3¢(t) : [0, T] — T*H3 with £(t) € TZnHs. te [0, T] such that

1

() = Fi (&(1)

HL_T(%)(E(t)) = maquU_%(f(t)) = constant.

e Optimal trajectory g(-) is the projection of the integral curve &(-) of
1

i

a(t)"

@ (g(),u(+)) is a extremal control trajectory (ECT) if it satisfies the
conditions of the maximum principle.
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Optimal controls

@ For each u € R? the associated Hamiltonian is

Hy 2 (p)

1 1
_E(Ul - a)2 - §u§ + u1p2 + u2p3.
@ Then

H
—=a+p—uu=0 = uu=a+p
oup
oH
a—=P3—U2=0 = U =p3
uz

@ Optimal Hamiltonian

1
H(p) = apz + 5(p3 + p3)-
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Cost-extended systems and Hamilton Poisson systems

o (X, x)with=(1,u) =A+w1B1+---+ uBy and
X(u) = (u— )T Q(u— p).
o Let B=[B;...B] then =(1,u) = A+ Bu

Theorem
Any ECT (g(-), u(+)) of (X, x) is given by

with
u(t) = QB p(t)".

Here p(-) : [0, T] — b3 is an integral curve of the Hamiltonian-Poisson
system on b3 specified by

1
H(p) = p(A+Bpu) + 5pBQ'B'p".

v
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Outline

@ Quadratic Hamilton-Poisson systems
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Quadratic Hamilton-Poisson systems

Quadratic Hamilton-Poisson systems on b3_

A quadratic Hamilton-Poisson system is a pair (h3_, Ha g) where

Hao:b3- = R, p~ p(A)+ Q(p).

Here A € g and Q is a positive semidefinite quadratic form on b3_.

A system Hjz g on h3_ becomes

1
Ha,o(p) = pA+ EprT
= La(p) + Ho(p).

where @ is a positive semidefinite 3 x 3 matrix.

@ Homogenous if A = 0. Denote system as Hog.
@ Inhomogenous if A # 0.

v
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Equivalence of Hamilton-Poisson systems

Affine equivalence

Ha o and Hg on bh3_ are affinely equivalent (A-equivalent) if 3 an affine
isomorphism W : b5 — b3, p— Wo(p) + g s.t.

Yy - HA7Q = /‘7333 oV,

@ One-to-one correspondence between integral curves and equilibrium
points.

Proposition

Ha o on b3_ is A-equivalent to
©Q Hap ooV, for any linear Poisson automorphism W : h3 — b3.
@ Ha o + C, for any Casimir function C: h3 — R.
© Ha,o, forany r #0.

v
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Homogeneous systems

Any Hg on b3_ is A-equivalent to exactly one of the following systems
1 1
Ho(p) =0, Hai(p) =5p3, Ha(p) = (3 + Pd)-

o

Proof sketch (1/3)
@ Recall Ho(p) = 5pQp" where

air b1 b
R=|b a b3
b2 b3 a3

ap,a2,a3 >0, apaz—b3 >0, ajaz—b3 >0, aa—bi>0.

@ Suppose a3 =0 = b3 = bp = 0. Suppose a, = 0 then b; =0 and
1 1 1 1 1

Ha(p)—521C%(p) = 5pQp' —5a1p = Sa1p —5a1p} = 0 = Ho(p)-
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Proof sketch (2/3)

@ Suppose a; # 0. Then

Va2 _bT 0
Vitp=pY, 1= 0 V= 0
0 0 ar
is a linear Poisson automorphism such that
aiar — b% 00
1@y = 0 10
0 0 0

@ Since Hg o Wy(p) = %Pwl Qi{ p we have

1 1
Hg o W1(p) — 5(a122 — b7)C3(p) = §P§ = Hi(p).

@ Similarly for case a3 # 0

v
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Proof sketch (3/3)

Three systems

1 1
Ho(p) =0, Hi(p) = 5p3, Ha(p) = (P + p3)-

Suppose H; is A-equivalent to H,.
@ 3 a linear isomorphism VW : p = p1), ¢ = [¢);] s.t.

(V- H2)(p) = (HpoW)(p).

@ That is
Y13p1p2 — Y12p1P3 T 0 T
Ya3p1p2 — Y22 P1P3 = 0
Y33p1p2 — Y32p1P3 (Y11p1 + Yo1p2 + Ya1p3) (Y12p1 + Yo2p2 + Y32p3)

Equating coefficients yields 13 = Y10 = W3 = 10 =0
—> dety = 0. The two systems are therefore not A-equivalent.

v
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Homogeneous and inhomogeneous systems

Let Ha o be a inhomogeneous quadratic Hamilton-Poisson system on h3_.
Ha,o is A-equivalent to the system Lg + H; for some B € h3 and exactly
one i € {0,1,2}.

Proof
HA’Q =La+ HQ.

3 a linear Poisson automorphism ¥ : p — pi), kK € R and exactly one
i €{0,1,2} s.t. HgoW + kC? = H;. Therefore

HaooW +kC?=LpaoW + HgoW +kC? = Lg + H;

where B = 9 A.
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Linear Poisson symmetries of each H;, i € {0,1,2}

Linear Poisson symmetry

A linear Poisson symmetry for a Hamilton-Poisson system Hg on h3_ is a
linear Poisson automorphism W : p — pw such that

HooW = H,o + kC?, r#0,k eR.

Proposition

The linear Poisson symmetries of H; for each i € {0, 1,2} are the linear
Poisson automorphisms W() : p — py()) where

[vows —vawn v wy wwy 0 wy
Ho . '(p(o) = 0 Vo  Wo H1 . 1/)(1) = 0 Vo  Wo
L 0 vy w3 0 0 w3
-:Fv22 F vg 0 O
H2 . '(p(2) = 0 Vo :|:V3
. 0 i Fv2

v
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Inhomogeneous systems

Any inhomogeneous positive semidefinite quadratic Hamilton-Poisson
system Hja g on h3_ of the form

@ La+ Hp is A-equivalent to exactly one of

0
Ho(p) =0, H{"(p) = p2.
@ La+ Hj is A-equivalent to exactly one of

1 1 1 1 1
H(p) = 53, HD (p) = py + 5P H(p) = p3 + 5P

@ Lp+ H> is A-equivalent to exactly one of

1 1
Ha(p) = §(p§ +p3), HIp)=p+ §(p§ + p3).

v
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Proof sketch (L4 + H1) (1/2)

@ We have
(La+ H1) o WD (p) = Ly o WD(p) + Hy 0 WD (p)
= P'L/)(I)A 4F gp% -+ kp% forsomer #0, ke R

ai

@ Now A = |:32] € b3, A#£NO.

a3
@ Suppose a3 = 0 and a» = 0 then

(La+ H1)(p) — a1C(p) = Hi(p).
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Proof sketch (La + H1) (2/2)

@ Suppose a3 = 0 and a» # 0 then

W oo o, oY -

o

is a linear Poisson symmetry of H; such that wgl) A=

a
puiVA— ZLp = p,.
an

@ We have that the system is A-equivalent to

1

HO (p) = pa + §p§.

@ Similarly for az # 0.

o8|~

ol o

and

o g

v
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Outline

© Conclusion
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Conclusion

o Cost-extended control systems
— cost-equivalence

@ Hamilton-Poisson systems
— Affine equivalence

Outlook

@ Stability of Hamilton-Poisson systems.
@ Integration of Hamilton-Poisson systems.

@ Obtain extremal controls and optimal trajectories for optimal control
problems on Hs.
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