Equivalence of Control Systems on the Heisenberg Group

Catherine Bartlett

Departmental Seminar 1 October 2014

Outline

- Introduction
- 2 Control systems on H₃
- 3 Cost-extended control systems
- Quadratic Hamilton-Poisson systems
- Conclusion

Outline

- Introduction
- Control systems on H₃
- 3 Cost-extended control systems
- Quadratic Hamilton-Poisson systems
- Conclusion

Heisenberg group H₃

Matrix representation

$$\mathsf{H}_3 = \left\{ egin{bmatrix} 1 & x_2 & x_1 \ 0 & 1 & x_3 \ 0 & 0 & 1 \end{bmatrix} | x_1, x_2, x_3 \in \mathbb{R}
ight\}.$$

H₃ is a matrix Lie group:

- \bullet Closed subgroup of $GL(3,\mathbb{R})\subset\mathbb{R}^{3\times 3}$
 - is a submanifold of $\mathbb{R}^{3\times3}$
 - group multiplication is smooth
- H₃ is simply connected.
- Can be linearized yields Lie algebra $\mathfrak{h}_3 = T_1 H_3$

Heisenberg Lie algebra \mathfrak{h}_3 and dual Lie algebra \mathfrak{h}_3^*

Lie algebra \mathfrak{h}_3

Matrix representation

$$\mathfrak{h}_3 = \left\{ egin{bmatrix} 0 & x_2 & x_1 \ 0 & 0 & x_3 \ 0 & 0 & 0 \end{bmatrix} \mid x_1, x_2, x_3 \in \mathbb{R}
ight\}.$$

Standard basis

$$E_1 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \qquad E_2 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \qquad E_3 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

Commutator relations

$$[E_1, E_2] = \mathbf{0}, \quad [E_1, E_3] = \mathbf{0}, \quad [E_2, E_3] = E_1.$$

Dual Lie algebra \mathfrak{h}_3^*

Dual basis denoted by $(E_i^*)_{i=1}^3$. Each E_i^* defined by $\langle E_i^*, E_j \rangle = \delta_{ij}$, i, j = 1, 2, 3.

The automorphism group of \mathfrak{h}_3

Lie algebra automorphism

Map $\psi:\mathfrak{h}_3\to\mathfrak{h}_3$ such that

- ullet ψ is a linear isomorphism
- ψ preserves the Lie bracket: $\psi[X, Y] = [\psi X, \psi Y]$.

Proposition

The automorphism group of \mathfrak{h}_3 is given by

$$\mathsf{Aut}(\mathfrak{h}_3) = \left\{ \begin{bmatrix} v_2w_3 - v_3w_2 & v_1 & w_1 \\ 0 & v_2 & w_2 \\ 0 & v_3 & w_3 \end{bmatrix} \mid v_1, v_2, v_3, w_1, w_2, w_3 \in \mathbb{R}, \ v_2w_3 - v_3w_2 \neq 0 \right\}.$$

Lie-Poisson spaces

Lie-Poisson structure

A Lie-Poisson structure on \mathfrak{h}_3^* is a bilinear operation $\{\cdot,\cdot\}$ on $C^{\infty}(\mathfrak{h}_3^*)$ such that:

- ullet $(C^{\infty}(\mathfrak{h}_3^*), \{\cdot, \cdot\})$ is a Lie algebra
- **2** $\{\cdot,\cdot\}$ is a derivation in each factor.

Minus Lie Poisson structure

$$\{F,G\}_{-}(p) = -\left\langle p, \left[\mathbf{d}F(p), \mathbf{d}G(p)\right] \right\rangle$$

for $p \in \mathfrak{h}_3^*$ and $F, G \in C^{\infty}(\mathfrak{h}_3^*)$.

Heisenberg Poisson space

Poisson space $(\mathfrak{h}_3^*, \{\cdot, \cdot\})$ denoted \mathfrak{h}_3^* .

Hamiltonian vector fields and Casimir functions

Hamiltonian vector field \vec{H}

To each $H \in C^{\infty}(\mathfrak{h}_3^*)$, we associate a Hamiltonian vector field \vec{H} on \mathfrak{h}_3^* specified by

$$\vec{H}[F] = \{F, H\}.$$

Casimir function

A function $C \in C^{\infty}(\mathfrak{h}_3^*)$ is a Casimir function if $\{C, F\} = 0$ for all $F \in C^{\infty}(\mathfrak{h}_3^*)$.

Proposition

 $C(p) = p_1$ is a Casimir function on \mathfrak{h}_{3-}^* .

linear Poisson automorphisms of \mathfrak{h}_{3-}^*

Linear Poisson automorphism

A linear Poisson automorphism is a linear isomorphism $\Psi:\mathfrak{h}_3^*\to\mathfrak{h}_3^*$ such that

$$\{F,G\} \circ \Psi = \{F \circ \Psi, G \circ \Psi\}$$

for all $F, G \in C^{\infty}(\mathfrak{h}_3^*)$.

Proposition

The group of linear Poisson automorphisms of \mathfrak{h}_{3-}^* is

$$\left\{ p \mapsto p \begin{bmatrix} v_2w_3 - v_3w_2 & v_1 & w_1 \\ 0 & v_2 & w_2 \\ 0 & v_3 & w_3 \end{bmatrix} : v_1, v_2, v_3, w_1, w_2, w_3 \in \mathbb{R}, v_2w_3 - v_3w_2 \neq 0 \right\}.$$

Outline

- Introduction
- 2 Control systems on H₃
- 3 Cost-extended control systems
- Quadratic Hamilton-Poisson systems
- Conclusion

Control systems

Left-invariant control affine system

$$\dot{g} = g \Xi(\mathbf{1}, u) = g(A + u_1B_1 + \dots + u_\ell B_\ell), \quad g \in \mathsf{H}_3, \quad u \in \mathbb{R}^\ell,$$

$$A, B_1, \dots, B_\ell \in \mathfrak{h}_3.$$

- Admissible controls: $u(\cdot): [0, T] \to \mathbb{R}^{\ell}$.
- Trajectory: absolutely continuous curve

$$g(\cdot):[0,T]\to H_3$$

such that $\dot{g}(t) = g(t) \Xi(\mathbf{1}, u(t))$ for almost every $t \in [0, T]$.

- Parametrization map: $\Xi(\mathbf{1},\cdot): \mathbb{R}^{\ell} \to \mathfrak{h}_3$.
- Trace: $\Gamma = A + \Gamma^0 = A + \langle B_1, \dots, B_\ell \rangle$.
- Homogeneous system: $A \in \Gamma^0$.
- Inhomogeneous system: $A \notin \Gamma^0$.

Controllability

Definition

A system is controllable if for any $g_0,g_1\in H_3$ there exists a trajectory $g(\cdot):[0,T]\to H_3$ such that

$$g(0) = g_1$$
 and $g(T) = g_1$.

Full-rank condition

 $\Sigma = (H_3, \Xi)$ has full rank if its trace $\Gamma = A + \Gamma^0 = A + \langle B_1, \dots, B_\ell \rangle$ generates \mathfrak{h}_3 i.e.

$$Lie(\Gamma) = \mathfrak{h}_3$$
.

Neccessary conditions for controllabilty

- H₃ is connected
- Γ has full rank.

Detached feedback equivalence

Definition

 $\Sigma = (\mathsf{H}_3, \Xi)$ and $\Sigma' = (\mathsf{H}_3, \Xi')$ are detached feedback equivalent if \exists $\phi : \mathsf{H}_3 \to \mathsf{H}_3$ and $\varphi : \mathbb{R}^\ell \to \mathbb{R}^\ell$ such that

$$T_{g}\phi\cdot\Xi(g,u)=\Xi'(\phi(g),\varphi(u)).$$

Proposition

 Σ and Σ' are detached feedback equivalent if an only if

$$T_1\phi \cdot \Xi(\mathbf{1},u) = \Xi'(\mathbf{1},\varphi(u)) \iff \psi \cdot \Gamma = \Gamma'.$$

Proposition

Any 2 input homogeneous system on H_3 is detached feedback equivalent to the system

$$\Xi^{(2,0)}(\mathbf{1},u)=u_1E_2+u_2E_3.$$

Outline

- Introduction
- 2 Control systems on H₃
- 3 Cost-extended control systems
- Quadratic Hamilton-Poisson systems
- Conclusion

Cost-extended control systems

Optimal control problem

• $\Sigma = (H_3, \Xi)$

$$\dot{g} = g\Xi(1,u), \quad g \in \mathsf{H}_3, u \in \mathbb{R}^\ell.$$

Boundary data

$$g(0) = g_0, \ g(T) = g_1, \ g_0, g_1 \in H_3, \ T > 0.$$

Cost functional

$$\mathcal{J}\int_0^T (u(t)-\mu)^ op Q(u(t)-\mu) dt o ext{min}, \quad \mu \in \mathbb{R}^\ell$$

Q positive definite $\ell \times \ell$ matrix.

Cost-extended system (Σ, χ)

- $\Sigma = (H_3, \Xi)$
- Cost function $\chi: \mathbb{R}^{\ell} \to \mathbb{R}$

$$\chi(u) = (u - \mu)^{\top} Q(u - \mu)$$

Cost equivalence

Cost equivalence

 (Σ, χ) and (Σ', χ') are cost equivalent iff $\exists \phi \in Aut(H_3)$ and $\varphi : \mathbb{R}^{\ell} \to \mathbb{R}^{\ell}$ such that

$$T_1\phi \cdot \Xi(\mathbf{1}, u) = \Xi'(\mathbf{1}, \varphi(u))$$
 and $\chi' \circ \varphi = r\chi$

for some r > 0.

The diagrams

commute.

Cost equivalence

Corollary

If Σ and Σ' are detached feedback equivalent then $(\Sigma, \chi \circ \varphi)$ and (Σ', χ) are cost equivalent.

Feedback transformations leaving $\Sigma = (H_3, \Xi)$ invariant

$$\mathcal{T}_{\Sigma} = \{ \varphi \in \mathsf{Aff}(\mathbb{R}^{\ell}) : \exists \psi \in d\mathsf{Aut}(\mathsf{H}_3), \psi \cdot \Xi(\mathbf{1}, u) = \Xi(\mathbf{1}, \varphi(u)) \}.$$

Proposition

 (Σ, χ) and (Σ, χ') are cost equivalent iff $\exists \varphi \in \mathcal{T}_{\Sigma}$ such that $\chi' = r\chi \circ \varphi$ for some r > 0.

$$r(\chi \circ \varphi)(u) = r(u - \mu')^{\top} \varphi^{\top} Q \varphi(u - \mu')$$

for $\mu' = \varphi^{-1}(u)$.

Classification

Proposition

Any controllable two-input homogeneous cost-extended system on H_3 is C-equivalent to exactly one of

$$(\bar{\Sigma}, \bar{\chi}_{\alpha}) : \begin{cases} \bar{\Xi}(\mathbf{1}, u) = u_1 E_2 + u_2 E_3 \\ \bar{\chi}_{\alpha} = (u_1 - \alpha)^2 + u_2^2, \quad \alpha > 0. \end{cases}$$

Each α parametrises a distinct family of class representatives.

Proof sketch (1/4)

- Any (2,0) system on H_3 is detached feedback equivalent $\bar{\Sigma}=(H_3,\bar{\Xi}).$
- Determine T_{ν̄}.

Proof sketch (2/4)

In matrix form

$$\psi \cdot \bar{\Xi}(\mathbf{1}, u) = \begin{bmatrix} v_2 w_3 - v_3 w_2 & v_1 & w_1 \\ 0 & v_2 & w_2 \\ 0 & v_3 & w_3 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} v_1 & w_1 \\ v_2 & w_2 \\ v_3 & w_3 \end{bmatrix}.$$

Also in matrix form

$$\bar{\Xi}(\mathbf{1},\varphi(u)) = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \varphi_{11} & \varphi_{12} \\ \varphi_{21} & \varphi_{22} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \varphi_{11} & \varphi_{12} \\ \varphi_{21} & \varphi_{22} \end{bmatrix}.$$

- $v_2w_3 v_3w_2 \neq 0 \implies \varphi_{11}\varphi_{22} \varphi_{21}\varphi_{12} \neq 0 \implies \mathcal{T}_{\bar{\Sigma}} = \mathsf{GL}(2,\mathbb{R}).$
- Recall

$$\chi \circ \varphi(u) = (u - \mu')^{\top} \varphi^{\top} Q \varphi(u - \mu')$$

for $\mu' = \varphi^{-1}(\mu)$.

Proof sketch (3/4)

Now

$$Q = \begin{bmatrix} a_1 & b \\ b & a_2 \end{bmatrix} \quad \text{with} \quad a_1, \ a_2, \ a_1a_2 - b^2 > 0.$$

And so

$$\varphi_1 = \begin{bmatrix} \frac{1}{\sqrt{a_1 - \frac{b^2}{a_2}}} & 0\\ -\frac{b}{a_2\sqrt{a_1 - \frac{b^2}{a_2}}} & \frac{1}{\sqrt{a_2}} \end{bmatrix} \in \mathcal{T}_{\overline{\Sigma}}.$$

Such that

$$(\chi \circ \varphi_1)(u) = (u - \mu')^{\top} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} (u - \mu'), \quad \mu' \in \mathbb{R}^2.$$

- $\bullet \ \ \mathsf{O}(2) \subset \mathcal{T}_{\overline{\Sigma}} \ \ \mathsf{and} \ \ \mathsf{if} \ \ \varphi \in \mathsf{O}(2) \ \ \mathsf{then} \ \ \varphi^\top \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \varphi = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$
- Also $\varphi \in O(2) \iff \varphi^{-1} \in O(2)$.

Proof sketch (4/4)

- Let $\mu' = \begin{bmatrix} \alpha'_1 \\ \alpha'_2 \end{bmatrix}$.
- $\exists \varphi_2^{-1} \in O(2)$ such that $\varphi_2^{-1}(\mu') = \begin{bmatrix} \alpha \\ 0 \end{bmatrix}, \quad \alpha > 0.$
- As a matrix $u = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$ and so

$$(\chi \circ (\varphi_1 \circ \varphi_2))(u) = (u - \varphi_2^{-1}(\mu'))^{\top} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} (u - \varphi_2^{-1}(\mu'))$$
$$= \begin{bmatrix} u_1 - \alpha \\ u_2 \end{bmatrix}^{\top} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} u_1 - \alpha \\ u_2 \end{bmatrix}$$
$$= (u_1 - \alpha)^2 + u_2^2 = \bar{\chi}_{\alpha}.$$

• Verify that $\bar{\chi}_{\alpha} \circ \varphi \neq r\bar{\chi}_{\alpha'}$ for any $\alpha \neq \alpha'$, r > 0.

Hamiltonian function

Optimal control problem

$$\dot{g} = g(u_1 E_2 + u_2 E_2), \quad g \in \mathsf{H}_3$$
 $g(0) = g_0 \quad \text{and} \quad g(T) = g_1, \quad g_0, g_1 \in \mathsf{H}_3, T > 0$
 $\mathcal{J} = \int_0^T (u_1(t) - \alpha)^2 + u_2^2(t) \to \min, \quad \alpha > 0.$

• Associate a Hamiltonian function on $T^*H_3 = H_3 \times \mathfrak{h}_3^*$:

$$H_{u}^{-\frac{1}{2}}(\xi) = -\frac{1}{2}\bar{\chi}(u) + \xi(g\bar{\Xi}(\mathbf{1},u)), \quad \xi = (g,p) \in T^*H_3$$

$$= -\frac{1}{2}\bar{\chi}(u) + p(\bar{\Xi}(\mathbf{1},u))$$

$$= -\frac{1}{2}\bar{\chi}(u) + \langle p_1E_1^* + p_2E_2^* + p_3E_3^*, u_1E_2 + u_2E_2 \rangle$$

$$= -\frac{1}{2}(u_1 - \alpha)^2 - \frac{1}{2}u_2^2 + u_1p_2 + u_2p_3.$$

Pontryagin maximum principle

Maximum principle

Let $(\bar{g}(\cdot), \bar{u}(\cdot))$ be a solution to our optimal control problem on [0, T]. Then $\exists \, \xi(t) : [0, T] \to T^* \mathsf{H}_3$ with $\xi(t) \in T^*_{\bar{g}(t)} \mathsf{H}_3$, $t \in [0, T]$ such that

$$\dot{\xi}(t) = \vec{H}_{\vec{u}(t)}^{-\frac{1}{2}}(\xi(t))$$
 $H_{\vec{u}(t)}^{-\frac{1}{2}}(\xi(t)) = \max_{u} H_{u}^{-\frac{1}{2}}(\xi(t)) = \text{constant}.$

- Optimal trajectory $\bar{g}(\cdot)$ is the projection of the integral curve $\xi(\cdot)$ of $\vec{H}_{\bar{u}(t)}^{-\frac{1}{2}}$.
- $(g(\cdot), u(\cdot))$ is a extremal control trajectory (ECT) if it satisfies the conditions of the maximum principle.

Optimal controls

• For each $u \in \mathbb{R}^2$ the associated Hamiltonian is

$$H_u^{-\frac{1}{2}}(p) = -\frac{1}{2}(u_1 - \alpha)^2 - \frac{1}{2}u_2^2 + u_1p_2 + u_2p_3.$$

Then

$$\frac{\partial H}{\partial u_1} = \alpha + p_2 - u_1 = 0 \implies u_1 = \alpha + p_2$$

$$\frac{\partial H}{\partial u_2} = p_3 - u_2 = 0 \implies u_2 = p_3$$

Optimal Hamiltonian

$$H(p) = \alpha p_2 + \frac{1}{2}(p_2^2 + p_3^2).$$

Cost-extended systems and Hamilton Poisson systems

- (Σ, χ) with $\Xi(\mathbf{1}, u) = A + u_1 B_1 + \cdots + u_\ell B_\ell$ and $\chi(u) = (u \mu)^\top Q(u \mu)$.
- Let $\mathbf{B} = [B_1 \dots B_\ell]$ then $\Xi(\mathbf{1}, u) = A + \mathbf{B}u$

Theorem

Any ECT $(g(\cdot), u(\cdot))$ of (Σ, χ) is given by

$$\dot{g}(t) = \Xi(g(t), u(t))$$

with

$$u(t) = Q^{-1}\mathbf{B}^{\top} p(t)^{\top}.$$

Here $p(\cdot):[0,T]\to \mathfrak{h}_3$ is an integral curve of the Hamiltonian-Poisson system on \mathfrak{h}_3 specified by

$$H(p) = p(A + \mathbf{B}\mu) + \frac{1}{2}p\mathbf{B}Q^{-1}\mathbf{B}^{\top}p^{\top}.$$

Outline

- Introduction
- Control systems on H₃
- 3 Cost-extended control systems
- Quadratic Hamilton-Poisson systems
- Conclusion

Quadratic Hamilton-Poisson systems

Quadratic Hamilton-Poisson systems on \mathfrak{h}_{3-}^{\ast}

A quadratic Hamilton-Poisson system is a pair $(\mathfrak{h}_{3-}^*, H_{A,\mathcal{Q}})$ where

$$H_{A,\mathcal{Q}}:\mathfrak{h}_{3-}^*\to\mathbb{R},\quad p\mapsto p(A)+\mathcal{Q}(p).$$

Here $A \in \mathfrak{g}$ and $\mathcal Q$ is a positive semidefinite quadratic form on \mathfrak{h}_{3-}^* .

A system $H_{A,Q}$ on \mathfrak{h}_{3-}^* becomes

$$H_{A,\mathcal{Q}}(p) = pA + \frac{1}{2}pQp^{\top}$$

= $L_A(p) + H_{\mathcal{Q}}(p)$.

where Q is a positive semidefinite 3×3 matrix.

- Homogenous if A = 0. Denote system as H_Q .
- Inhomogenous if $A \neq 0$.

Equivalence of Hamilton-Poisson systems

Affine equivalence

 $H_{A,\mathcal{Q}}$ and $H_{B,\mathcal{R}}$ on \mathfrak{h}_{3-}^* are affinely equivalent (A-equivalent) if \exists an affine isomorphism $\Psi:\mathfrak{h}_3^*\to\mathfrak{h}_3^*$, $p\mapsto\Psi_0(p)+q$ s.t.

$$\Psi_0 \cdot \vec{H}_{A,\mathcal{Q}} = \vec{H}_{B,\mathcal{R}} \circ \Psi.$$

 One-to-one correspondence between integral curves and equilibrium points.

Proposition

 $H_{A,\mathcal{Q}}$ on \mathfrak{h}_{3-}^* is A-equivalent to

- **1** $H_{A,Q} \circ \Psi$, for any linear Poisson automorphism $\Psi : \mathfrak{h}_3^* \to \mathfrak{h}_3^*$.
- ② $H_{A,Q} + C$, for any Casimir function $C: \mathfrak{h}_3^* \to \mathbb{R}$.
- **3** $H_{A,rO}$, for any $r \neq 0$.

Homogeneous systems

Proposition

Any H_Q on \mathfrak{h}_{3-}^* is A-equivalent to exactly one of the following systems

$$H_0(p) = 0, \quad H_1(p) = \frac{1}{2}p_2^2, \quad H_2(p) = \frac{1}{2}(p_2^2 + p_3^2).$$

Proof sketch (1/3)

• Recall $H_{\mathcal{Q}}(p) = \frac{1}{2}pQp^{\top}$ where

$$Q = \begin{bmatrix} a_1 & b_1 & b_2 \\ b_1 & a_2 & b_3 \\ b_2 & b_3 & a_3 \end{bmatrix}$$

$$a_1, a_2, a_3 \ge 0, \quad a_2a_3 - b_3^2 \ge 0, \quad a_1a_3 - b_2^2 \ge 0, \quad a_1a_2 - b_1^2 \ge 0.$$

• Suppose $a_3 = 0 \implies b_3 = b_2 = 0$. Suppose $a_2 = 0$ then $b_1 = 0$ and

$$H_{\mathcal{Q}}(p) - \frac{1}{2}a_1C^2(p) = \frac{1}{2}pQp^{\top} - \frac{1}{2}a_1p_1^2 = \frac{1}{2}a_1p_1^2 - \frac{1}{2}a_1p_1^2 = 0 = H_0(p).$$

Proof sketch (2/3)

• Suppose $a_2 \neq 0$. Then

$$\Psi_1: p \mapsto p\psi_1, \quad \psi_1 = egin{bmatrix} \sqrt{a_2} & -rac{b_1}{\sqrt{a_2}} & 0 \ 0 & rac{1}{\sqrt{a_2}} & 0 \ 0 & 0 & a_2 \end{bmatrix}$$

is a linear Poisson automorphism such that

$$\psi_1 Q \psi_1^{\top} = egin{bmatrix} a_1 a_2 - b_1^2 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 0 \end{bmatrix}.$$

• Since $H_{\mathcal{Q}} \circ \Psi_1(p) = \frac{1}{2} p \psi_1 Q \psi_1^\top p^\top$ we have

$$H_{\mathcal{Q}} \circ \Psi_1(p) - \frac{1}{2}(a_1a_2 - b_1^2)C^2(p) = \frac{1}{2}p_2^2 = H_1(p).$$

• Similarly for case $a_3 \neq 0$

Proof sketch (3/3)

Three systems

$$H_0(p)=0, \quad H_1(p)=rac{1}{2}p_2^2, \quad H_2(p)=rac{1}{2}(p_2^2+p_3^2).$$

- Suppose H_1 is A-equivalent to H_2 .
- \exists a linear isomorphism $\Psi: p \mapsto p\psi$, $\psi = [\psi_{ij}]$ s.t.

$$(\Psi \cdot \vec{H}_2)(p) = (\vec{H}_1 \circ \Psi)(p).$$

That is

$$\begin{bmatrix} \psi_{13}p_{1}p_{2} - \psi_{12}p_{1}p_{3} \\ \psi_{23}p_{1}p_{2} - \psi_{22}p_{1}p_{3} \\ \psi_{33}p_{1}p_{2} - \psi_{32}p_{1}p_{3} \end{bmatrix}^{\top} = \begin{bmatrix} 0 \\ 0 \\ (\psi_{11}p_{1} + \psi_{21}p_{2} + \psi_{31}p_{3})(\psi_{12}p_{1} + \psi_{22}p_{2} + \psi_{32}p_{3}) \end{bmatrix}^{\top}$$

• Equating coefficients yields $\psi_{13} = \psi_{12} = \psi_{23} = \psi_{22} = 0$ \Longrightarrow det $\psi = 0$. The two systems are therefore not A-equivalent.

Homogeneous and inhomogeneous systems

Proposition

Let $H_{A,\mathcal{Q}}$ be a inhomogeneous quadratic Hamilton-Poisson system on \mathfrak{h}_{3-}^* . $H_{A,\mathcal{Q}}$ is A-equivalent to the system L_B+H_i for some $B\in\mathfrak{h}_3$ and exactly one $i\in\{0,1,2\}$.

Proof

$$H_{A,Q} = L_A + H_Q.$$

 \exists a linear Poisson automorphism $\Psi: p \to p\psi, \ k \in \mathbb{R}$ and exactly one $i \in \{0,1,2\}$ s.t. $H_Q \circ \Psi + kC^2 = H_i$. Therefore

$$H_{A,Q} \circ \Psi + kC^2 = L_A \circ \Psi + H_Q \circ \Psi + kC^2 = L_B + H_i$$

where $B = \psi A$.

Linear Poisson symmetries of each H_i , $i \in \{0, 1, 2\}$

Linear Poisson symmetry

A linear Poisson symmetry for a Hamilton-Poisson system $H_{\mathcal{Q}}$ on \mathfrak{h}_{3-}^* is a linear Poisson automorphism $\Psi: p \mapsto p\psi$ such that

$$H_{\mathcal{Q}} \circ \Psi = H_{r\mathcal{Q}} + kC^2, \quad r \neq 0, k \in \mathbb{R}.$$

Proposition

The linear Poisson symmetries of H_i for each $i \in \{0,1,2\}$ are the linear Poisson automorphisms $\Psi^{(i)}: p \mapsto p\psi^{(i)}$ where

$$H_0: \psi^{(0)} = \begin{bmatrix} v_2 w_3 - v_3 w_2 & v_1 & w_1 \\ 0 & v_2 & w_2 \\ 0 & v_3 & w_3 \end{bmatrix} \qquad H_1: \psi^{(1)} = \begin{bmatrix} v_2 w_3 & 0 & w_1 \\ 0 & v_2 & w_2 \\ 0 & 0 & w_3 \end{bmatrix}$$

$$H_2: \psi^{(2)} = \begin{bmatrix} \mp v_2^2 \mp v_3^2 & 0 & 0 \\ 0 & v_2 & \pm v_3 \\ 0 & v_3 & \mp v_2 \end{bmatrix}$$

Inhomogeneous systems

Proposition

Any inhomogeneous positive semidefinite quadratic Hamilton-Poisson system $H_{A,Q}$ on \mathfrak{h}_{3-}^* of the form

• $L_A + H_0$ is A-equivalent to exactly one of

$$H_0(p) = 0, \quad H_1^{(0)}(p) = p_2.$$

• $L_A + H_1$ is A-equivalent to exactly one of

$$H_1(p) = \frac{1}{2}p_2^2, \quad H_1^{(1)}(p) = p_2 + \frac{1}{2}p_2^2, \quad H_2^{(1)}(p) = p_3 + \frac{1}{2}p_2^2.$$

• $L_A + H_2$ is A-equivalent to exactly one of

$$H_2(p) = \frac{1}{2}(p_2^2 + p_3^2), \quad H_1^{(2)}(p) = p_2 + \frac{1}{2}(p_2^2 + p_3^2).$$

Proof sketch $(L_A + H_1)$ (1/2)

We have

$$(L_A + H_1) \circ \Psi^{(1)}(p) = L_A \circ \Psi^{(1)}(p) + H_1 \circ \Psi^{(1)}(p)$$
$$= p\psi^{(1)}A + \frac{r}{2}p_2^2 + kp_1^2 \quad \text{for some } r \neq 0, \ k \in \mathbb{R}$$

- Now $A = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \in \mathfrak{h}_3, \ A \neq 0.$
- Suppose $a_3 = 0$ and $a_2 = 0$ then

$$(L_A + H_1)(p) - a_1 C(p) = H_1(p).$$

Proof sketch $(L_A + H_1)$ (2/2)

• Suppose $a_3 = 0$ and $a_2 \neq 0$ then

$$\Psi_1^{(1)}: p \to p\psi_1^{(1)}, \quad \psi_1^{(1)} = \begin{bmatrix} \frac{1}{a_2} & 0 & 0\\ 0 & \frac{1}{a_2} & 0\\ 0 & 0 & 1 \end{bmatrix}$$

is a linear Poisson symmetry of H_1 such that $\psi_1^{(1)}\cdot A=\begin{bmatrix}\frac{a_1}{a_2}\\1\\0\end{bmatrix}$ and $p\psi_1^{(1)}A-\frac{a_1}{a_2}p_1=p_2.$

• We have that the system is A-equivalent to

$$H_1^{(1)}(p) = p_2 + \frac{1}{2}p_2^2.$$

• Similarly for $a_3 \neq 0$.

Outline

- Introduction
- Control systems on H₃
- 3 Cost-extended control systems
- Quadratic Hamilton-Poisson systems
- Conclusion

Conclusion

Summary

- Cost-extended control systems
 - cost-equivalence
- Hamilton-Poisson systems
 - Affine equivalence

Outlook

- Stability of Hamilton-Poisson systems.
- Integration of Hamilton-Poisson systems.
- Obtain extremal controls and optimal trajectories for optimal control problems on H₃.