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Introduction

Origins of Riemannian geometry

Gauss (1777–1855) studied surfaces in R3

Gauss, Bolyai (1802–1860) and Lobachevsky (1792–1856) discovered
non-Euclidean geometry

Riemann (1826–1866) made a far-reaching generalisation of these
ideas, first presented in his inaugural lecture at Göttingen, 1854:

On the Hypotheses which lie at the Foundations of Geometry

Physical interpretation

A Riemannian manifold (M, g) models a free particle moving in M (the
configuration space) with kinetic energy T (x , ẋ) = 1

2gx(ẋ , ẋ)

How to generalise Riemannian geometry?

add constraints!

this yields two (in general, inequivalent) geometries
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Riemannian manifold (M , g)

Smooth manifold M

“looks like” Rn locally

local coordinate system
(and we can do calculus)

tangent space TxM is the
vector space of all tangent
vectors at x ∈ M

Riemannian metric g

family of inner products:

gx : TxM × TxM → R,
(Vx ,Wx) 7→ gx(Vx ,Wx)

can define length of tangent vectors,
angles between them, etc.
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Examples of Riemannian geometries

Euclidean geometry

En = (Rn, g), where gx(Vx ,Wx) = Vx •Wx is the dot product

prototypical Riemannian manifold

simplest case (because it’s flat, i.e., the curvature K = 0)

Non-Euclidean geometries

spherical geometry (K > 0):

M = Sn

g = dot product inherited from Rn+1 ⊃ Sn

hyperbolic geometry (K < 0):

M = Hn = {x ∈ Rn : xn > 0}

gx(Vx ,Wx) =
Vx •Wx

(xn)2
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Geodesics

Geodesics are generalisations of straight lines to curved spaces

Motivation from En: characterisations of straight lines

shortest curve between x ∈ Rn and y ∈ Rn:

the line segment γ : [0, 1]→ Rn, t 7→ (1− t)x + t y

straightest curve from x ∈ Rn in the direction Vx ∈ TxM:

the curve γ : [0, 1]→ M with γ(0) = x , γ̇(0) = Vx and

minimal acceleration: γ̈ = 0

How can we define a geodesic of (M , g)?

as shortest curves

as straightest curves
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Geodesics as shortest curves

Riemannian distance d(·, ·) on M

d(x , y) = inf
γ

length(γ), x , y ∈ M

infimum over all curves γ : [0,T ]→ M such that γ(0) = x , γ(T ) = y

length(γ) =
∫ T
0

√
gγ(t)(γ̇(t), γ̇(t)) dt

Geodesics

A curve γ : [0,T ]→ M is a

length minimiser if

length(γ) = d(γ(0), γ(T ))

geodesic if every sufficiently small
segment is a length minimiser
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Geodesics as straightest curves

Levi-Civita connection

∇ : Γ(TM)× Γ(TM)→ Γ(TM), (X ,Y ) 7→ ∇XY

∇XY is the “directional derivative” of Y along X

induced by g

Acceleration

for a curve γ, t 7→ ∇γ̇ γ̇(t) is the acceleration of γ

without a connection, there is no intrinsic definition of acceleration

Geodesics

A curve γ : [0,T ]→ M is a geodesic if

∇γ̇ γ̇(t) = 0, for every t ∈ [0,T ]
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Remarks

Riemannian geodesics

the two definitions of geodesics coincide (shortest = straightest)

geodesics are uniquely specified by initial point + direction

sufficiently close points can always be joined by geodesics

Curvature

can use ∇ to define curvature K of (M, g)

curvature measures how much M differs from En

(a) K < 0 (b) K = 0 (c) K > 0
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Generalising Riemannian geometry: constrained motion

What are constraints?

family of subspaces Dx ⊂ TxM

dimDx = r

tangent vectors in Dx are
“admissible velocities” from x

Admissible curves γ : [0,T ]→ M

γ is admissible if γ̇(t) ∈ Dγ(t) for every t ∈ [0,T ]
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Riemannian geometry with constraints

After introducing constraints: shortest 6= straightest

We have two inequivalent geometries:

Sub-Riemannian geometry
geodesics are shortest curves (locally length minimising)
fundamental object: Carnot-Carathéodory distance dcc(·, ·)

Nonholonomic Riemannian geometry
geodesics are straightest curves (minimal acceleration)
fundamental object: nonholonomic connection ∇

Connectivity assumption

We assume (in both geometries) that any two points in M are connected
by an admissible curve
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Sub-Riemannian manifold (M ,D, g |D)

Carnot-Carathéodory distance dcc(·, ·) on M

dcc(x , y) = inf
γ

length(γ), x , y ∈ M

infimum over all admissible curves joining x to y

connectivity assumption =⇒ dcc(·, ·) <∞

Sub-Riemannian geodesics

An admissible curve γ : [0,T ]→ M is a

length minimiser if d(γ(0), γ(T )) = length(γ)

normal sub-Riemannian geodesic if every sufficiently small segment is
a length minimiser

abnormal SR geodesics? — lie in the closure of {normal geodesics}
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Sub-Riemannian geodesics

Remarks

geodesics no longer specified by initial point + velocity

uniquely specified by a covector: ξx ∈ T ∗xM

sufficiently close points can always be joined by SR geodesics

Sub-Riemannian connection?

no analog of the Levi-Civita connection in SR geometry

as yet, no intrinsic and general notion of curvature
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Some problems in SR geometry

Classification of SR structures

particularly: left-invariant structures on Lie groups

3D case done; 4D case partially done

Optimal synthesis (and related problems)

explicitly calculating SR geodesics

given x , y ∈ M, what are the length minimisers joining x to y?

results for structures on H3, SE(2), SE(1, 1), SO(3) (and some
higher-dimensional Lie groups)
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Nonholonomic Riemannian manifold (M ,D,D⊥, g |D)

Nonholonomic connection

∇ : Γ(D)× Γ(D)→ Γ(D), (X ,Y ) 7→ ∇XY

D⊥ is a complement to D (so TM = D ⊕D⊥)

∇ induced (similar to the Levi-Civita connection) by D, D⊥ and g |D
can define acceleration of admissible curves only

Nonholonomic geodesic γ : [0,T ]→ M

An admissible curve γ is a nonholonomic geodesic if

∇γ̇ γ̇(t) = 0, for every t ∈ [0,T ]

uniquely specified by initial point + velocity

from x ∈ M: can only reach an r -dim submanifold of points near x
with NH geodesics
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Curvature of nonholonomic Riemannian manifolds

Schouten and Wagner curvature

Schouten (1928): first defined curvature of these structures

Wagner (1935): extended Schouten’s ideas; Wagner’s curvature
analogous to Riemannian curvature

Problems

characterise the constant curvature spaces (in particular: flat spaces)

holonomy groups
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Some (more) problems in NH Riemannian geometry

Nonholonomic immersions and submersions

immersions: embed one NH Riemannian structure inside another

submersions: project one NH Riemannian structure onto another

Classification of NH Riemannian structures

classifying left-invariant structures on Lie groups

equivalence (but not classification) considered for 3D and some 4D
structures

3D case: part of my PhD work
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Comparing SR and NH geodesics

(M,D,D⊥, g |D) has an associated SR manifold (M,D, g |D)

Comparison problems

Investigate the following situations:

(1) is a given NH geodesic also a SR geodesic?

(2) is a given SR geodesic also a NH geodesic?

(3) when do we have {NH geodesics} ⊂ {SR geodesics}?

Results for (3)

partial results, e.g., of the sort:

Suppose M = G is a Lie group, and D, D⊥, g |D are left invariant.

If D⊥1 is an ideal of the Lie algebra of G, then (3) holds true.

research still ongoing and quite recent
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