Sub-Riemannian Structures on Nilpotent Lie Groups

Rory Biggs

Geometry, Graphs and Control (GGC) Research Group Department of Mathematics, Rhodes University, Grahamstown, South Africa http://www.ru.ac.za/mathematics/research/ggc/

4th International Conference "Lie Groups, Differential Equations and Geometry" Modica, Italy, 8–15 June, 2016

Outline

Introduction

- Geodesics
- Isometries
- Central extensions

2 Nilpotent Lie algebras with dim $\mathfrak{g}' \leq 2$

- 3 Type I: Heisenberg groups and extensions
- 4 Type II: Two-step nilpotent with dim $\mathfrak{g}' = 2$
- **5** Type III: Three-step nilpotent with dim $\mathfrak{g}' = 2$

Conclusion

Outline

Introduction

- Geodesics
- Isometries
- Central extensions

2 Nilpotent Lie algebras with dim $\mathfrak{g}' \leq 2$

- 3 Type I: Heisenberg groups and extensions
- 4 Type II: Two-step nilpotent with dim $\mathfrak{g}'=2$
- 5 Type III: Three-step nilpotent with dim $\mathfrak{g}'=2$

6 Conclusion

Euclidean space \mathbb{E}^3

Metric tensor g:

• for each $x \in \mathbb{R}^3$, we have inner product \mathbf{g}_x • $\mathbf{g}_x = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Length of a curve $\gamma(\cdot)$:

$$\ell(\gamma(\cdot)) = \int_0^T \sqrt{\mathbf{g}(\dot{\gamma}(t),\dot{\gamma}(t))} \, dt$$

Distance:

$$d(x,y) = \inf\{\ell(\gamma(\cdot)) : \gamma(0) = x, \gamma(T) = y\}$$

Riemannian manifold: Euclidean space \mathbb{E}^3

geodesics through x = (0, 0, 0): straight lines

Riemannian manifold: Heisenberg group

Invariant Riemannian structure on Heisenberg group

Metric tensor g:

• for each
$$x \in \mathbb{R}^3$$
, we have inner product \mathbf{g}_x

•
$$\mathbf{g}_{x} = \begin{bmatrix} 1 & 0 & -x_{2} \\ 0 & 1 & 0 \\ -x_{2} & 0 & 1+x_{2}^{2} \end{bmatrix}$$

Length of a curve $\gamma(\cdot)$:

$$\ell(\gamma(\cdot)) = \int_0^T \sqrt{\mathbf{g}(\dot{\gamma}(t),\dot{\gamma}(t))} \, dt$$

Distance:

$$d(x,y) = \inf\{\ell(\gamma(\cdot)) : \gamma(0) = x, \gamma(T) = y\}$$

Riemannian manifold: Heisenberg group

geodesics through x = (0, 0, 0): helices and lines

Distribution on Heisenberg group

Distribution \mathcal{D}

 $x \mapsto \mathcal{D}(x) \subseteq T_x \mathbb{R}^3$

(smoothly) assigns subspace to tangent space at each point

Example: $\mathcal{D} = \operatorname{span}(\partial_{x_2}, x_2 \ \partial_{x_1} + \partial_{x_3})$

Bracket generating

Sub-Riemannian manifold: Heisenberg group

Sub-Riemannian structure $(\mathcal{D}, \mathbf{g})$

 \bullet distribution ${\cal D}$ spanned by vector fields

$$X_1 = \partial_{x_2} \quad \text{and} \quad X_2 = x_2 \ \partial_{x_1} + \partial_{x_3}$$

metric $\mathbf{g} = \begin{bmatrix} 1 & 0 & -x_2 \\ 0 & 1 & 0 \\ -x_2 & 0 & 1 + x_2^2 \end{bmatrix}$ restricted to \mathcal{D}
(in fact, need only be defined on \mathcal{D})

- \mathcal{D} -curve: a.c. curve $\gamma(\cdot)$ such that $\dot{\gamma}(t) \in \mathcal{D}(\gamma(t))$
- length of \mathcal{D} -curve: $\ell(\gamma(\cdot)) = \int_0^T \sqrt{\mathbf{g}(\dot{\gamma}(t), \dot{\gamma}(t))} dt$
- Carnot-Carathéodory distance:

 $d(x, y) = \inf\{\ell(\gamma(\cdot)) : \gamma(\cdot) \text{ is } \mathcal{D}\text{-curve connecting } x \text{ and } y\}$

Sub-Riemannian manifold: Heisenberg group

geodesics through x = (0, 0, 0): helices and lines

Some minimizing geodesics on Heisenberg group

Invariance

Homogeneous spaces

- \bullet Group of isometries of $(\mathsf{M},\mathcal{D},g)$ acts transitively on manifold.
- For any $x, y \in M$, there exists diffeomorphism $\phi : M \to M$ such that $\phi_* \mathcal{D} = \mathcal{D}$, $\phi^* \mathbf{g} = \mathbf{g}$ and $\phi(x) = y$.
- On Lie groups, we naturally consider those stuctures invariant with respect to left translation.

For sub-Riemannian example we considered before

• we have transitivity by isometries:

$$\begin{aligned} \phi_{a}: & (x_{1}, x_{2}, x_{3}) \mapsto (x_{1} + a_{1} + a_{2}x_{3}, x_{2} + a_{2}, x_{3} + a_{3}) \\ & \begin{bmatrix} 1 & x_{2} & x_{1} \\ 0 & 1 & x_{3} \\ 0 & 0 & 1 \end{bmatrix} \mapsto \begin{bmatrix} 1 & a_{2} & a_{1} \\ 0 & 1 & a_{3} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & x_{2} & x_{1} \\ 0 & 1 & x_{3} \\ 0 & 0 & 1 \end{bmatrix} \end{aligned}$$

The tangent bundle *T*G of a Lie group G is trivializable

 $TG \cong G \times \mathfrak{g}, \qquad T_1L_x \cdot A \longleftrightarrow (x, A)$

An element $X \in T_x$ G will simply be written as

$$X = xA = T_1L_x \cdot A.$$

The cotangent bundle T^*G of a Lie group G is trivializable

$$T^* G \cong G \times \mathfrak{g}^*, \qquad (T_{x^{-1}} L_x)^* \cdot p \longleftrightarrow (x, p)$$

Formalism

Left-invariant sub-Riemannian manifold (G, \mathcal{D}, g)

- Lie group G with Lie algebra g.
- \bullet Left-invariant bracket-generating distribution ${\cal D}$
 - $\mathcal{D}(x)$ is subspace of $T_x G$
 - $\mathcal{D}(x) = x\mathcal{D}(\mathbf{1})$
 - $Lie(\mathcal{D}(1)) = \mathfrak{g}$.
- \bullet Left-invariant Riemannian metric $\, g \,$ on $\, \mathcal{D} \,$
 - \mathbf{g}_x is a inner product on $\mathcal{D}(x)$
 - $\mathbf{g}_{x}(xA, xB) = \mathbf{g}_{1}(A, B)$ for $A, B \in \mathfrak{g}$.

Remark

Structure $(\mathcal{D}, \mathbf{g})$ on G is fully specified by

- \bullet subspace $\mathcal{D}(1)$ of Lie algebra \mathfrak{g}
- inner product $\mathbf{g_1}$ on $\mathcal{D}(\mathbf{1})$.

The length minimization problem

$$\dot{\gamma}(t) \in \mathcal{D}(\gamma(t)), \qquad \gamma(0) = \gamma_0, \quad \gamma(T) = \gamma_1,$$

 $\int_0^T \sqrt{\mathbf{g}(\dot{\gamma}(t), \dot{\gamma}(t))} \to \min$

is equivalent to the invariant optimal control problem

$$\dot{\gamma}(t) = \gamma(t) \sum_{i=1}^{m} u_i B_i, \qquad \gamma(0) = \gamma_0, \quad \gamma(T) = \gamma_1$$
$$\int_0^T \sum_{i=1}^{m} u_i(t)^2 \ dt \to \min.$$

where $\mathcal{D}(\mathbf{1}) = \langle B_1, \dots, B_m \rangle$ and $\mathbf{g}_{\mathbf{1}}(B_i, B_j) = \delta_{ij}$.

- Via the Pontryagin Maximum Principle, lift problem to cotangent bundle T*G = G × g*.
- Yields necessary conditions for optimality.

Geodesics

- Normal geodesics: projection of integral curves of Hamiltonian system on T*G (endowed with canonical symplectic structure).
- Abnormal geodesics: degenerate case depending only on distribution; do not exist for Riemannian manifolds.

Proposition

The normal geodesics of $(\mathsf{G},\mathcal{D},\mathbf{g})$ are given by

$$\dot{\gamma} = \gamma \; (\iota^* p)^{\sharp}, \qquad \dot{p} = \vec{H}(p), \qquad \gamma \in \mathsf{G}, \; p \in \mathfrak{g}^*$$

where

$$H(p) = \frac{1}{2}(\iota^* p) \cdot (\iota^* p)^{\sharp}$$

and

•
$$\flat : \mathcal{D}(1) \to \mathcal{D}(1)^*$$
, $A \mapsto \mathbf{g}_1(A, \cdot)$ and $\sharp = \flat^{-1} : \mathcal{D}(1)^* \to \mathcal{D}(1)$
• $\iota : \mathcal{D}(1) \to \mathfrak{g} = T_1 \mathsf{G}$ is inclusion map and $\iota^* : \mathfrak{g}^* \to \mathcal{D}(1)^*$.

Lie-Poisson space \mathfrak{g}^*

$$\{H,G\}(p)=-p\cdot [dH(p),dG(p)], \qquad p\in \mathfrak{g}^*,\ H,G\in C^\infty(\mathfrak{g}^*)$$

Isometric

 (G, D, \mathbf{g}) and (G', D', \mathbf{g}') are isometric if there exists a diffeomorphism $\phi : G \to G'$ such that $\phi_* D = D'$ and $\mathbf{g} = \phi^* \mathbf{g}'$

• ϕ establishes one-to-one relation between geodesics of (G, D, g) and (G', D', g').

Theorem

[Kivioja & Le Donne, arXiv preprint, 2016]

Let G and \overline{G} be simply connected nilpotent Lie groups.

If $\phi: G \to \bar{G}$ is an isometry between (G, D, g) and $(\bar{G}, \bar{D}, \bar{g})$, then

$$\phi = L_{\bar{x}} \circ \phi'$$

decomposes as the composition

- of a left translation $L_{\bar{x}}: \bar{\mathsf{G}} \to \bar{\mathsf{G}}, \ \bar{y} \mapsto \bar{x} \, \bar{y}$
- and a Lie group isomorphism $\phi' : G \to \overline{G}$.

Definition

Let $q: G \to G/N$, $N \le Z(G)$ be the canonical quotient map.

 $(\mathsf{G},\tilde{\mathcal{D}},\tilde{\mathbf{g}})$ is a central extension of $(\mathsf{G}/\mathsf{N},\mathcal{D},\mathbf{g})$ if

•
$$T_1q \cdot \tilde{\mathcal{D}}(1) = \mathcal{D}(1);$$

•
$$\tilde{\mathbf{g}}_1(A,B) = \mathbf{g}_1(T_1q \cdot A, T_1q \cdot B)$$
 for $A, B \in (\mathfrak{n} \cap \tilde{\mathcal{D}}(1))^{\perp}$

We call

$$(\mathsf{G},\hat{\mathcal{D}},\hat{\mathbf{g}}),\quad\hat{\mathcal{D}}(\mathbf{1})=(\mathfrak{n}\cap\tilde{\mathcal{D}}(\mathbf{1}))^{\perp},\quad\hat{\mathbf{g}}=\tilde{\mathbf{g}}\big|_{\hat{\mathcal{D}}}$$

the corresponding shrunk extension.

•
$$\hat{D}$$
-lift: lift D -curve γ on G/N to \hat{D} -curve $\hat{\gamma}$ on G
• \hat{D} -projection: \hat{D} -lift of $q \circ \tilde{\gamma}$, where $\tilde{\gamma}$ is \tilde{D} -curve on G.

Proposition

[Biggs & Nagy, Differential Geom. Appl., 2016]

- The $\hat{\mathcal{D}}$ -lift of any (minimizing, normal, or abnormal) geodesic of $(G/N, \mathcal{D}, \mathbf{g})$ is a (minimizing, normal, or abnormal, respectively) geodesic of both $(G, \hat{\mathcal{D}}, \hat{\mathbf{g}})$ and $(G, \tilde{\mathcal{D}}, \tilde{\mathbf{g}})$.
- The normal geodesics of (G, \hat{D}, \hat{g}) are exactly the \hat{D} -projections of the normal geodesics of $(G, \tilde{D}, \tilde{g})$.

Note

Center of a nilpotent Lie group is always nontrivial.

Outline

Introduction

- Geodesics
- Isometries
- Central extensions

2 Nilpotent Lie algebras with dim $\mathfrak{g}' \leq 2$

- 3 Type I: Heisenberg groups and extensions
- 4 Type II: Two-step nilpotent with dim $\mathfrak{g}'=2$
- 5 Type III: Three-step nilpotent with dim $\mathfrak{g}'=2$

6 Conclusion

Strategies for investigating structures on Lie groups

- study structures on low-dimensional Lie groups
- investigate structures on a (sufficiently) regular family of groups

Structures on nilpotent Lie groups

- the simplest and serve as prototypes
- rich source of examples and counterexamples

Examples

- Riemannian: nilmanifolds, H-type, two-step nilpotent
- sub-Riemannian: Heisenberg groups, Carnot structures

$\dim \mathfrak{g}' = 0$

• Abelian Lie algebras \mathbb{R}^{ℓ}

(All structures isometric to Euclian space \mathbb{E}^{ℓ})

$\dim \mathfrak{g}' = 1$

• Heisenberg Lie algebras \mathfrak{h}_{2n+1}

$$[X_i, Y_i] = Z, \quad i = 1, \dots, n$$

- and their trivial Abelian extensions $\mathfrak{h}_{2n+1}\oplus\mathbb{R}^\ell$
- smallest such algebra is three-dimensional
- two-step nilpotent

Туре

$\dim \mathfrak{g}' = 2 \text{ and } \mathfrak{g}' \subseteq \mathfrak{z}$

- decomposes as direct sum $\mathfrak{n} \oplus \mathbb{R}^{\ell}$, where $\mathfrak{n}' = Z(\mathfrak{n})$
- in terms of basis $Z_1, Z_2, W_1, \ldots, W_n$ for \mathfrak{n} we have

 $[W_i, W_j] = \alpha_{ij} Z_1 + \beta_{ij} Z_2$

- examples: $\mathfrak{h}_{2n+1} \oplus \mathfrak{h}_{2m+1}$, real form of $\mathfrak{h}_{2n+1}^{\mathbb{C}}$
- smallest such algebra is five dimensional:

$$[W_1, W_2] = Z_1, \qquad [W_1, W_3] = Z_2$$

two-step nilpotent

Type II

Nilpotent Lie algebras with $\dim \mathfrak{g}' \leq 2$

• three-step nilpotent

Rory Biggs (Rhodes University)

Outline

- Geodesics
- Isometries
- Central extensions

2 Nilpotent Lie algebras with dim $\mathfrak{g}' \leq 2$

- 3 Type I: Heisenberg groups and extensions
- 4 Type II: Two-step nilpotent with dim $\mathfrak{g}'=2$
- 5 Type III: Three-step nilpotent with dim $\mathfrak{g}'=2$

6 Conclusion

Proposition

Any sub-Riemannian structure on $H_{2n+1}\times \mathbb{R}^\ell$ is isometric to the direct product of

- a sub-Riemannian structure on H_{2n+1}
- and the Euclidean space \mathbb{E}^{ℓ} .

Note

Sub-Riemannian (and Riemannian) structures on the Heisenberg group have been thoroughly investigated.

• classification, isometry group, exponential map, totally geodesic subgroups, conjugate and cut loci, minimizing geodesics

[Biggs & Nagy, J. Dyn. Control Syst., 2016] (and references therein) Orthonormal frames for normalized structures on the Heisenberg group:

$$\widetilde{\mathbf{g}}^{\lambda} : (Z, \lambda_1 X_1, \lambda_1 Y_2, \dots, \lambda_n X_n, \lambda_n Y_n) (\mathcal{D}, \mathbf{g}^{\lambda}) : (\lambda_1 X_1, \lambda_1 Y_2, \dots, \lambda_n X_n, \lambda_n Y_n)$$

Result

- The Riemannian structure $\tilde{\mathbf{g}}^{\lambda}$ is central extension of \mathbb{E}^{2n} with corresponding shrunk extension $(\mathcal{D}, \mathbf{g}^{\lambda})$.
- The normal geodesics of $(\mathcal{D}, \mathbf{g}^{\lambda})$ are exactly the \mathcal{D} -projection of the normal geodesics of $\tilde{\mathbf{g}}^{\lambda}$.
- The \mathcal{D} -lift of a straight line in \mathbb{E}^{2n} is a minimizing geodesic of both $\tilde{\mathbf{g}}^{\lambda}$ and $(\mathcal{D}, \mathbf{g}^{\lambda})$.

Outline

Introduction

- Geodesics
- Isometries
- Central extensions

2) Nilpotent Lie algebras with dim $\mathfrak{g}' \leq 2$

- Type I: Heisenberg groups and extensions
- 4 Type II: Two-step nilpotent with dim g' = 2
- 5 Type III: Three-step nilpotent with dim $\mathfrak{g}'=2$

6 Conclusion

Proposition

Let T be a simply connected nilpotent Lie group with two-dimensional commutator subgroup coinciding with its center. Any sub-Riemannian structure on $T \times \mathbb{R}^{\ell}$ is isometric to the direct product of

- a sub-Riemannian structure on T
- and the Euclidean space \mathbb{E}^{ℓ} .

Note

We need only consider sub-Riemannian structures on groups T.

Proposition

Let G be a simply two-step nilpotent Lie group. Every sub-Riemannian structure on G can be realized as the shrunk extension corresponding to some Riemannian extension (G, g) of a Riemannian structure on a quotient of G by a central subgroup.

Proof sketch.

- Let (X_1, \ldots, X_n) , $n < \dim G$ be an orthonormal frame for a sub-Riemannian structure on G.
- As $\mathfrak{g}' \subseteq Z(\mathfrak{g})$, there exists $Z_1, \ldots, Z_m \in Z(\mathfrak{g})$, $m = \dim \mathbb{G} n$ such that $\{Z_1, \ldots, Z_m, X_1, \ldots, X_n\}$ is linearly independent.
- The Riemannian structure with orthonormal frame
 (Z₁,..., Z_m, X₁,..., X_n) is a central extension of a Riemannian
 structure on G/ exp((Z₁,..., Z_m)) with the required corresponding
 shrunk extension.

Consequently...

Sub-Riemannian and Riemannian structures on two-step nilpotent Lie groups are closely related.

For instance

- $\bullet\,$ The sub-Riemannian geodesics are " $\mathcal D\text{-}\mathsf{projections"}$ of the Riemannian geodesics.
- A subalgebra $\mathfrak{n} \subseteq \mathfrak{g}$ is the algebra of a (tangentially) totally geodesic subgroup for the sub-Riemannian structure if and only if $\mathfrak{n} + \langle Z_1, \ldots, Z_m \rangle$ is a totally geodesic subgroup for the corresponding Riemannian structure.

Riemannian structures on two-step nilpotent Lie groups

Have been quite well studied in 1990's:

- properties of geodesics
- characterization of totally geodesic subgroups
- conjugate & cut loci

[Eberlein, Ann. Sci. Éc. Norm. Supér., 1994]

[Eberlein, Trans. Amer. Math. Soc., 1994]

[Walschap, J. Geom. Anal., 1997]

[Eberlein, in "Modern dynamical systems and applications," 2004]

Subclass of Heisenberg type groups also well studied.

Outline

Introduction

- Geodesics
- Isometries
- Central extensions

2) Nilpotent Lie algebras with dim $\mathfrak{g}' \leq 2$

- 3 Type I: Heisenberg groups and extensions
- 4 Type II: Two-step nilpotent with dim $\mathfrak{g}'=2$

5 Type III: Three-step nilpotent with dim $\mathfrak{g}' = 2$

Conclusion

Metric decomposition

Let D_4 be the simply connected nilpotent Lie group with Lie algebra \mathfrak{d}_4 .

Counter example

There exists a sub-Riemannian structure on $\mathsf{D}_4\times\mathbb{R}$ which is not isometric to a direct product of

- a sub-Riemannian structure on D₄
- and the Euclidean space \mathbb{E}^1 .

$$\mathfrak{d}_4: \quad [W_1, W_2] = V, \quad [V, W_2] = Z, \qquad \mathfrak{d}_4 \oplus \mathbb{R} = \langle Z, V, W_1, W_2 \rangle \oplus \langle A_1
angle$$

Riemannian structure with $\mathbf{g_1} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & \frac{1}{2} \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & \frac{1}{2} & 0 & 0 & 1 \end{bmatrix}$

$$\begin{split} \mathfrak{d}_{2n+4}: & \langle Z, V, W_1, W_2, X_1, Y_1, \dots, X_n, Y_n \rangle \\ & [W_1, W_2] = V, \quad [V, W_2] = Z, \quad [X_i, Y_j] = \delta_{ij}Z \end{split}$$

Normalized distributions

codim 2 :	$\langle W_1, W_2, X_1, Y_1, \ldots, X_n, Y_n \rangle = \mathcal{D}_1$
codim 1 :	$\langle Z, W_1, W_2, X_1, Y_1, \ldots, X_n, Y_n \rangle = \mathcal{D}_2$
	$\langle V, W_1, W_2, X_1, Y_1, \ldots, X_n, Y_n \rangle = \mathcal{D}_3$
codim 0 :	$\langle Z, V, W_1, W_2, X_1, Y_1, \ldots, X_n, Y_n \rangle$

Central extensions...

- SR structures on \mathcal{D}_1 are related to SR structures on \mathcal{D}_2 .
- SR structures on \mathcal{D}_3 are related to the Riemannian structures.

Outline

Introduction

- Geodesics
- Isometries
- Central extensions

2) Nilpotent Lie algebras with dim $\mathfrak{g}' \leq 2$

- 3 Type I: Heisenberg groups and extensions
- 4 Type II: Two-step nilpotent with dim $\mathfrak{g}'=2$
- 5 Type III: Three-step nilpotent with dim $\mathfrak{g}' = 2$

Conclusion

Summary & outlook

- Three types of nilpotent Lie groups with dim $\mathfrak{g}' \leq 2$.
- Type I: has been thoroughly investigated.
- Type II: sub-Riemannian structures are strongly related to Riemannian structures on two-step nilpotent Lie groups.
- Type III: sub-Riemannian (and Riemannian) structures remain to be fully investigated.