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Introduction

Left-invariant sub-Riemannian manifold (G,D, g)

Lie group G with Lie algebra g.

Left-invariant bracket-generating distribution D
D(x) is subspace of TxG
D(x) = T1Lx · D(1)
Lie(D(1)) = g.

Left-invariant Riemannian metric g on D
gx is a inner product on D(x)
L∗x gx = g1

Remark

Structure (D, g) on G is fully specified by

subspace D(1) of Lie algebra g

inner product g1 on D(1).

Rory Biggs (Rhodes University) Isometries of SR structures on Lie groups 7ECM 2 / 14



Introduction

Carnot Carathéodory distance

d(x , y) = inf{`(γ(·)) : γ(·) is D-curve connecting x and y }

`(γ) =

∫ T

0

√
g(γ̇, γ̇)dt

Completeness

The CC-distance d is complete.

There exists a (minimizing) geodesic realizing the CC-distance
between any two points.
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Introduction

Invariant sub-Riemannian structures

received quite some attention in the last two decades

interest from engineering and control community

minimizing geodesics

classification of structures
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Boscain U, Rossi F. Invariant Carnot–Caratheodory metrics on S3, SO(3), SL(2),
and lens spaces. SIAM J Control Optim. 2008;47:1851–78.

Sachkov YuL. Cut locus and optimal synthesis in the sub-Riemannian problem on
the group of motions of a plane. ESAIM Control Optim Calc Var.
2011;17(2):293–321.

Biggs R, Nagy PT. On sub-Riemannian and Riemannian structures on the
Heisenberg groups. J Dyn Control Syst. 2016;22:563–594

Agrachev A, Barilari D. Sub-Riemannian structures on 3D Lie groups. J Dyn
Control Syst. 2012;18:21–44.
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Isometries

Isometric & L-isometric

(G,D, g) and (G′,D′, g′) are isometric if there exists a diffeomorphism
φ : G→ G′ such that φ∗D = D′ and g = φ∗g′

If φ is additionally a Lie group isomorphism, then we say the
structures are L-isometric.

Isometry group

Iso(G,D, g) = {φ : G→ G : φ∗D = D, g = φ∗g}

Left translations are isometries

Iso(G,D, g) is generated by left translations and isotropy subgroup of
identity

Iso1(G,D, g) = {φ ∈ Iso(G,D, g) : φ(1) = 1}

If Iso1(G,D, g) ≤ Aut(G), then Iso(G,D, g) = LG o Iso1(G,D, g)
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Isometries

What is known?

Iso1(G, g) ≤ Aut(G) if G is simply connected and nilpotent

Wilson EN. Isometry groups on homogeneous nilmanifolds. Geom
Dedicata. 1982;12(3):337–46.

Iso1(G,D, g) ≤ Aut(G) if (G,D, g) is a Carnot group
i.e., g = g1 ⊕ · · · ⊕ gk , [g1, gj ] = gj+1, [g1, gk ] = {0}, D(1) = g1

Hamenstädt U. Some regularity theorems for Carnot–Carathéodory
metrics. J Differential Geom. 1990;32(3):819–50.
Kishimoto I. Geodesics and isometries of Carnot groups. J Math Kyoto
Univ. 2003;43(3):509–22.

Iso1(G,D, g) ≤ Aut(G) if G is simply connected and nilpotent

Kivioja V, Le Donne E. Isometries of nilpotent metric groups.
arXiv:1601.08172.
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Isometries

Question

Is Iso1(G,D, g) ≤ Aut(G) for any other classes of groups?

In this talk

Investigate situation for 3D simply connected groups (describe isometry
groups).
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Determining isometries on 3D Lie groups

Riemannian extension

Let (G,D, g) be SR structure with orthonormal frame (X1,X2)

Structure defines a contact one-form ω on G, given by
ω(X1) = ω(X2) = 0, dω(X1,X2) = ±1

Any isometry φ preserves ω up to sign, i.e., φ∗ω = ±ω.

Let X0 be Reeb vector field associated to ω
(i.e., ω(X0) = 1, dω(X0, ·) ≡ 0)

Any isometry preserves X0 up to sign, i.e., φ∗X0 = ±X0

Let (G, g̃) be the stucture with orthonormal frame (X0,X1,X2).

Proposition

φ ∈ Iso(G,D, g) ⇐⇒ φ ∈ Iso(G, g̃), φ∗D = D
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Determining isometries on 3D Lie groups

Aim: determine group {φ ∈ Iso1(G, g̃) : φ∗D = D}
Let ψ ∈ d Iso1(G, g̃)

ψ preserves D1 and g̃1, so ψ ∈ O(2)× Z2

ψ preserves (1, 3) curvature tensor R of g̃,
i.e., ψ · R(A1,A2,A3) = R(ψ · A1, ψ · A2, ψ · A3)

ψ preserves covariant derivative ∇R,
i.e., ψ · ∇R(A1,A2,A3,A4) = ∇R(ψ · A1, ψ · A2, ψ · A3, ψ · A4)

Group of prospective isotropies

Sym(G, g̃) = {ψ ∈ O(2)× Z2 : ψ∗R = R, ψ∗∇R = ∇R}

If Sym(G, g̃) ≤ Aut(g), then d Iso1(G,D, g) = Sym(G, g̃) ≤ Aut(g)

Otherwise, further investigation required
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Example

Euclidean group S̃E(2)

Basis for se(2): [E2,E3] = E1, [E3,E1] = E2, [E1,E2] = 0

Aut(se(2)) :

 a1 a2 a3
−σa2 σa1 a4

0 0 σ

 , a21 + a22 6= 0, σ = ±1

Normalized structure has orthonormal frame ( 1√
r
E2,

1√
r
E3), r > 0

Riemannian extension

Reeb vector field: ±1
r E1

Associated Riemannian structure g̃1 =

r2 0 0
0 r 0
0 0 r


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Example

Levi-Civita connection

For left-invariant vector fields Y ,Z ,W and left-invariant orthonormal
frame (X1,X2,X3), we have

∇YZ = g(∇YZ ,X1)X1 + g(∇YZ ,X2)X2 + g(∇YZ ,X3)X3

g(∇YZ ,W ) = 1
2(g([Y ,Z ],W )− g([Z ,W ],Y ) + g([W ,Y ],Z ))

So on se(2)...

∇AB = a2(r−1)b3−a3(r+1)b2
2r

E1 + 1
2
(a1(r − 1)b3 + a3(r + 1)b1)E2 − 1

2
(r − 1)(a1b2 + a2b1)E3

Rory Biggs (Rhodes University) Isometries of SR structures on Lie groups 7ECM 11 / 14



Example

Riemannian extension

Reeb vector field: ±1
r E1

Associated Riemannian structure g̃1 =

r2 0 0
0 r 0
0 0 r


If r 6= 1

Sym(S̃E(2), g) =


σ1 0 0

0 σ2 0
0 0 σ1σ2

 : σ1, σ2 = ±1

 ∼= Z2 × Z2

Sym(S̃E(2), g) ≤ Aut(se(2))

Hence Iso1(S̃E(2), g) ≤ Aut(S̃E(2))
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Results

Theorem

Let (D, g) be a sub-Riemannian structure on a simply connected
three-dimensional Lie group G.

1 If G 6∼= Aff(R)0 × R, then Iso1(G,D, g) ≤ Aut(G).

2 If G ∼= Aff(R)0 × R, then Iso1(G,D, g) 6≤ Aut(G).

Proposition

Two sub-Riemannian structures on the same simply connected 3D Lie
group are isometric if and only if they are L-isometric.

cf. Agrachev A, Barilari D. Sub-Riemannian structures on 3D Lie
groups. J Dyn Control Syst. 2012;18(1):21–44.
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Conclusion

Summary & outlook

Structures on the same 3D group are isometric iff they are
L-isometric.

Most isometry groups are generated by left translations and
automorphisms (in 3D).

Sub-Riemannian structures on simply connected 4D Lie groups

codim 2 — isometries decompose as left translation and automorphisma

codim 1 — similar technique may work?

Generalizations?

acf. Almeida D.M., Sub-Riemannian homogeneous spaces of Engel type, J.
Dyn. Control Syst. 20 (2014), 149–166
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