Isometries of Riemannian and sub-Riemannian structures on 3D Lie groups

Rory Biggs

Geometry, Graphs and Control (GGC) Research Group Department of Mathematics, Rhodes University, Grahamstown, South Africa http://www.ru.ac.za/mathematics/research/ggc/

> Differential Geometry and its Applications Brno, Czech Republic, July 11–15, 2016

2 Isometries of Riemannian structures

3 Isometries of sub-Riemannian structures

Introduction

Left-invariant sub-Riemannian manifold (G, \mathcal{D}, g)

- Lie group G with Lie algebra g.
- \bullet Left-invariant bracket-generating distribution ${\cal D}$
 - $\mathcal{D}(x)$ is subspace of $T_x G$
 - $\mathcal{D}(x) = T_1 L_x \cdot \mathcal{D}(1)$
 - $Lie(\mathcal{D}(1)) = \mathfrak{g}.$
- \bullet Left-invariant Riemannian metric $\, g \,$ on $\, \mathcal{D} \,$
 - \mathbf{g}_x is a inner product on $\mathcal{D}(x)$

• $L_x^* \mathbf{g}_x = \mathbf{g_1}$

Remark

Structure $(\mathcal{D}, \mathbf{g})$ on G is fully specified by

- \bullet subspace $\mathcal{D}(1)$ of Lie algebra \mathfrak{g}
- inner product $\mathbf{g_1}$ on $\mathcal{D}(\mathbf{1})$.

Carnot-Carathéodory distance

 $d(x, y) = \inf\{\ell(\gamma(\cdot)) : \gamma(\cdot) \text{ is } \mathcal{D}\text{-curve connecting } x \text{ and } y\}$

Completeness

- The CC-distance *d* is complete.
- There exists a (minimizing) geodesic realizing the CC-distance between any two points.

Introduction

Invariant Riemannian structures

- studied for several decades
- rich source of examples and counterexamples for a number of questions and conjectures in Riemannian geometry.
- Wolf JA. Curvature in nilpotent Lie groups. Proc Amer Math Soc. 1964;15:271-4.
- Kaplan A. Riemannian nilmanifolds attached to Clifford modules. Geom Dedicata. 1981;11(2):127–36.
- Korányi A. Geometric properties of Heisenberg-type groups. Adv Math. 1985;56(1):28–38.
- Eberlein P. Geometry of 2-step nilpotent groups with a left invariant metric. Ann Sci École Norm Sup. 1994;27(5):611–60
- Lauret J. Modified H-type groups and symmetric-like Riemannian spaces. Differential Geom Appl. 1999;10(2):121–43.
- Ha KY, Lee JB. Left invariant metrics and curvatures on simply connected three-dimensional Lie groups. Math Nachr. 2009;282(6):868–98.

Introduction

Invariant sub-Riemannian structures

- received quite some attention in the last two decades
- interest from engineering and control community
- minimizing geodesics
- classification of structures
- Strichartz RS. Sub-Riemannian geometry. J Differential Geom. 1986;24(2):221-63.
- Boscain U, Rossi F. Invariant Carnot-Caratheodory metrics on S³, SO(3), SL(2), and lens spaces. SIAM J Control Optim. 2008;47(4):1851–78.
- Sachkov YuL. Cut locus and optimal synthesis in the sub-Riemannian problem on the group of motions of a plane. ESAIM Control Optim Calc Var. 2011;17(2):293–321.
- Agrachev A, Barilari D. Sub-Riemannian structures on 3D Lie groups. J Dyn Control Syst. 2012;18(1):21–44.
- Almeida DM. Sub-Riemannian homogeneous spaces of Engel type. J Dyn Control Syst. 2014;20(2):149–66.

Isometries

Isometric & L-isometric

- (G, D, g) and (G', D', g') are isometric if there exists a diffeomorphism $\phi : G \to G'$ such that $\phi_* D = D'$ and $g = \phi^* g'$
- If ϕ is additionally a Lie group isomorphism, then we say the structures are \mathcal{L} -isometric.
- Isometry group

$$\mathsf{Iso}(\mathsf{G},\mathcal{D},\mathbf{g}) = \{\phi:\mathsf{G} o \mathsf{G} \,:\, \phi_*\mathcal{D} = \mathcal{D}, \mathbf{g} = \phi^*\mathbf{g}\}$$

- Left translations are isometries
- $\mathsf{lso}(\mathsf{G},\mathcal{D},\mathbf{g})$ is generated by left translations and the isotropy subgroup of identity

 $\mathsf{lso}_1(\mathsf{G},\mathcal{D},\mathbf{g}) = \{\phi \in \mathsf{lso}(\mathsf{G},\mathcal{D},\mathbf{g}) \, : \, \phi(\mathbf{1}) = \mathbf{1}\}$

• If $Iso_1(G, D, g) \leq Aut(G)$, then $Iso(G, D, g) = L_G \rtimes Iso_1(G, D, g)$

Isometries

What is known?

$\bullet~\mathsf{lso}_1(\mathsf{G},\mathbf{g}) \leq \mathsf{Aut}(\mathsf{G})$ if G is simply connected and nilpotent

- Wilson EN. Isometry groups on homogeneous nilmanifolds. Geom Dedicata. 1982;12(3):337-46.
- $\mathsf{lso}_1(\mathsf{G}, \mathcal{D}, \mathbf{g}) \leq \mathsf{Aut}(\mathsf{G}) \text{ if } (\mathsf{G}, \mathcal{D}, \mathbf{g}) \text{ is a Carnot group}$ i.e., $\mathfrak{g} = \mathfrak{g}_1 \oplus \cdots \oplus \mathfrak{g}_k$, $[\mathfrak{g}_1, \mathfrak{g}_j] = \mathfrak{g}_{j+1}$, $[\mathfrak{g}_1, \mathfrak{g}_k] = \{0\}$, $\mathcal{D}(\mathbf{1}) = \mathfrak{g}_1$
 - Hamenstädt U. Some regularity theorems for Carnot–Carathéodory metrics. J Differential Geom. 1990;32(3):819–50.
 - Kishimoto I. Geodesics and isometries of Carnot groups. J Math Kyoto Univ. 2003;43(3):509–22.
- $\bullet~\mathsf{Iso}_1(\mathsf{G},\mathcal{D},\mathbf{g}) \leq \mathsf{Aut}(\mathsf{G})$ if G is simply connected and nilpotent
 - Kivioja V, Le Donne E. Isometries of nilpotent metric groups. arXiv:1601.08172.

Question

Is $Iso_1(G, \mathcal{D}, g) \leq Aut(G)$ for any other classes of groups?

Counter examples

- Unimodular/Simple Riemannian metric on SU(2) with Killing metric
- Completely solvable any Riemannian or sub-Riemannian metric on $Aff(\mathbb{R})_0\times\mathbb{R}$

In this talk

Investigate situation for 3D simply connected groups (describe isometry groups).

Aim: determine isotropy subgroup of identity

- Let $\psi \in d \operatorname{Iso}_1(\mathsf{G}, \mathbf{g})$
- ψ preserves \mathbf{g}_1 , so $\psi \in \mathsf{O}(3)$
- ψ preserves (1,3) curvature tensor Ri.e., $\psi \cdot R(A_1, A_2, A_3) = R(\psi \cdot A_1, \psi \cdot A_2, \psi \cdot A_3)$
- ψ preserves covariant derivative ∇R
 i.e., ψ · ∇R(A₁, A₂, A₃, A₄) = ∇R(ψ · A₁, ψ · A₂, ψ · A₃, ψ · A₄)

Group of "prospective isotropies"

$$\mathsf{Sym}(\mathsf{G},\mathbf{g}) = \{\psi \in \mathsf{O}(\mathsf{3}) \, : \, \psi^* R = R, \, \psi^* \nabla R = \nabla R\}$$

• If
$$\nabla R \equiv 0$$
, then $d \operatorname{Iso}_1(G, g) = \operatorname{Sym}(G, g)$ [É. Cartan]

- If $Sym(G, \mathbf{g}) \leq Aut(\mathfrak{g})$, then $d Iso_1(G, \mathbf{g}) = Sym(G, \mathbf{g}) \leq Aut(\mathfrak{g})$
- Otherwise, further investigation required

Riemannian: Example

Euclidean group $\widetilde{SE}(2)$

• Basis for
$$\mathfrak{se}(2)$$
: $[E_2, E_3] = E_1$, $[E_3, E_1] = E_2$, $[E_1, E_2] = 0$
• Aut $(\mathfrak{se}(2))$: $\begin{bmatrix} a_1 & a_2 & a_3 \\ -\sigma a_2 & \sigma a_1 & a_4 \\ 0 & 0 & \sigma \end{bmatrix}$, $a_1^2 + a_2^2 \neq 0$, $\sigma = \pm 1$
• Normalized metric $\mathbf{g_1} = r \begin{bmatrix} \beta & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $r > 0$, $0 < \beta \le 1$

Levi-Civita connection

For left-invariant vector fields Y, Z, W and left-invariant orthonormal frame (X_1, X_2, X_3) , we have

$$\nabla_Y Z = \mathbf{g}(\nabla_Y Z, X_1) X_1 + \mathbf{g}(\nabla_Y Z, X_2) X_2 + \mathbf{g}(\nabla_Y Z, X_3) X_3$$

 $\mathbf{g}(\nabla_Y Z, W) = \frac{1}{2}(\mathbf{g}([Y, Z], W) - \mathbf{g}([Z, W], Y) + \mathbf{g}([W, Y], Z)))$

Riemannian: Example

$$\nabla_{A}B = \frac{a_{2}(\beta-1)b_{3}-a_{3}(\beta+1)b_{2}}{2\beta}E_{1} + \frac{1}{2}(a_{1}(\beta-1)b_{3}+a_{3}(\beta+1)b_{1})E_{2} - \frac{1}{2}(\beta-1)(a_{1}b_{2}+a_{2}b_{1})E_{3}$$

Case: $0 < \beta < 1$

• $\nabla R \not\equiv 0$

• Sym(
$$\widetilde{SE}(2), \mathbf{g}$$
) = $\left\{ \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_1 \sigma_2 \end{bmatrix} : \sigma_1, \sigma_2 = \pm 1 \right\} \cong \mathbb{Z}_2 \times \mathbb{Z}_2$

•
$$Sym(\widetilde{SE}(2), \mathbf{g}) \leq Aut(\mathfrak{se}(2))$$

• Hence $Iso_1(SE(2), \mathbf{g}) \leq Aut(SE(2))$.

Case: $\beta = 1$

•
$$\nabla R \equiv 0$$

•
$$\mathsf{Sym}(\widetilde{\mathsf{SE}}(2), \mathbf{g}) \cong \mathsf{O}(3)$$
; $\mathsf{Sym}(\widetilde{\mathsf{SE}}(2), \mathbf{g}) \not\leq \mathsf{Aut}(\mathfrak{se}(2))$

• In fact, $(\widetilde{\mathsf{SE}}(2), \mathbf{g}) \cong \mathbb{E}^3$.

Riemannian: Results

Theorem

Let ${\bf g}$ be a Riemannian metric on a simply connected three-dimensional Lie group G.

- If $\nabla R \neq 0$ and $G \ncong Aff(\mathbb{R})_0 \times \mathbb{R}$, then $Iso_1(G, \mathbf{g}) \leq Aut(G)$.
- $\textbf{@} If \nabla R \not\equiv 0 \text{ and } G \cong Aff(\mathbb{R})_0 \times \mathbb{R}, \text{ then } Iso_1(G, \mathbf{g}) \not\leq Aut(G)$
- **3** If $\nabla R \equiv 0$ and G is non-Abelian, then $Iso_1(G, \mathbf{g}) \not\leq Aut(G)$.
- If G is Abelian, then $Iso_1(G, \mathbf{g}) \leq Aut(G)$ trivially.

Corollary

 $d \operatorname{Iso}_1(G, \mathbf{g}) = \operatorname{Sym}(G, \mathbf{g}).$

Proposition

Two Riemannian metrics on the same simply connected 3D Lie group are isometric if and only if they are $\mathfrak{L}\text{-isometric}.$

Mubarakzyanov	Bianchi	Unimodular	Nilpotent	Compl. Solv.	Exponential	Solvable	Simple	Simply connected group
− 3g ₁	I	•	•	•	•	•		\mathbb{R}^3
$\mathfrak{g}_{2.1}\oplus\mathfrak{g}_1$				•	•	•		$Aff(\mathbb{R})_0\times\mathbb{R}$
\$ 3.1	II	•	•	•	•	•		H ₃
\$ 3.2	IV			•	•	•		G _{3.2}
\$ 3.3	V			•	•	•		G _{3.3}
\$ 3.4	VI ₀	•		•	•	•		SE (1, 1)
$\mathfrak{g}^{\alpha}_{3.4}$	VI_h			•	•	•		$G^{lpha}_{3.4}$
g _{3.5}	VII ₀	•				•		SE (2)
$\mathfrak{g}_{3.5}^{\alpha}$	VII_h				•	•		$G^{lpha}_{3.5}$
g 3.6	VIII	•					•	$\widetilde{SL}(2,\mathbb{R})$
Ø 3.7	IX	•					•	SU (2)
Groups for which $I_{SO}(G, g) \leq Aut(G)$ for all Riomannian matrice								

Groups for which $Iso_1(G,g) \leq Aut(G)$ for all Riemannian metrics.

Rory Biggs (Rhodes University)

Riemannian extension

- Let (G, D, g) be SR structure with orthonormal frame (X_1, X_2)
- Structure defines a contact one-form ω on G, given by $\omega(X_1) = \omega(X_2) = 0$, $d\omega(X_1, X_2) = \pm 1$
- Any isometry ϕ preserves ω up to sign, i.e., $\phi^*\omega=\pm\omega.$
- Let X₀ be Reeb vector field associated to ω (i.e., ω(X₀) = 1, dω(X₀, ·) ≡ 0)
- Any isometry preserves X_0 up to sign, i.e., $\phi_*X_0=\pm X_0$
- Let (G, \tilde{g}) be the structure with orthonormal frame (X_0, X_1, X_2) .

Lemma

$$\phi \in \mathsf{lso}(\mathsf{G},\mathcal{D},\mathbf{g}) \quad \Longleftrightarrow \quad \phi \in \mathsf{lso}(\mathsf{G},\tilde{\mathbf{g}}), \ \phi_*\mathcal{D} = \mathcal{D}$$

Sub-Riemannian: Example

Euclidean group $\widetilde{SE}(2)$

• Basis for
$$\mathfrak{se}(2)$$
: $[E_2, E_3] = E_1$, $[E_3, E_1] = E_2$, $[E_1, E_2] = 0$
• Aut $(\mathfrak{se}(2))$: $\begin{bmatrix} a_1 & a_2 & a_3 \\ -\sigma a_2 & \sigma a_1 & a_4 \\ 0 & 0 & \sigma \end{bmatrix}$, $a_1^2 + a_2^2 \neq 0$, $\sigma = \pm 1$

• Normalized structure has orthonormal frame $(\frac{1}{\sqrt{r}}E_2, \frac{1}{\sqrt{r}}E_3)$, r > 0

Riemannian extension

• Reeb vector field: $\pm \frac{1}{r}E_1$

• Associated Riemannian structure $\tilde{\mathbf{g}}_{\mathbf{1}} = \begin{bmatrix} r^2 & 0 & 0 \\ 0 & r & 0 \\ 0 & 0 & r \end{bmatrix}$

• Hence,
$$Iso_1(\widetilde{SE}(2), \mathcal{D}, \mathbf{g}) \leq Aut(\widetilde{SE}(2))$$

Theorem

Let $(\mathcal{D}, \mathbf{g})$ be a sub-Riemannian structure on a simply connected three-dimensional Lie group G.

- If $G \cong Aff(\mathbb{R})_0 \times \mathbb{R}$, then $Iso_1(G, \mathcal{D}, g) \leq Aut(G)$.
- ② If $G \cong Aff(\mathbb{R})_0 \times \mathbb{R}$, then $Iso_1(G, \mathcal{D}, g) ≤ Aut(G)$.

Proposition

Two sub-Riemannian structures on the same simply connected 3D Lie group are isometric if and only if they are \mathfrak{L} -isometric.

cf. Agrachev A, Barilari D. Sub-Riemannian structures on 3D Lie groups. J Dyn Control Syst. 2012;18(1):21–44.

Summary & outlook

- Structures on the same group are isometric iff they are \mathfrak{L} -isometric.
- Most isometry groups are generated by left translations and automorphisms.
- Sub-Riemannian structures on simply connected 4D Lie groups
 - codim 2 isometries decompose as left translation and automorphism^a
 - codim 1 similar technique may work?
- generalizations? $Sym(G, g) = d Iso_1(G, g)$?

^acf. Almeida D.M., Sub-Riemannian homogeneous spaces of Engel type, J. Dyn. Control Syst. 20 (2014), 149–166