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In this paper we consider the ways in which the Mathematical Literacy (ML) assessment 15 
taxonomy provides spaces for the problem solving and reasoning identified as critical to 16 
mathematical  literacy  competence. We  do  this  through  an  analysis  of  the  taxonomy 17 
structure within which Mathematical Literacy competences are assessed. We argue  that 18 
shortcomings  in  this  structure  in  relation  to  the  support and development of  reasoning 19 
and problem solving  feed  through  into  the kinds of questions  that are asked within  the 20 
assessment  of  Mathematical  Literacy.  Some  of  these  shortcomings  are  exemplified 21 
through the questions that appeared in the 2008 Mathematical Literacy examinations. We 22 
conclude the paper with a brief discussion of the implications of this taxonomy structure 23 
for  the development of  the  reasoning and problem‐solving competences  that align with 24 
curricular  aims.  This  paper  refers  to  the  assessment  taxonomy  in  the  Mathematical 25 
Literacy Curriculum Statement (Deparment of Education (DOE), 2007). 26 

 27 

Mathematical Literacy was introduced as a new subject in the post-compulsory Further Education and 28 
Training (FET) curriculum in 2006. Its introduction made a mathematically-oriented subject – either 29 
Mathematics or Mathematical Literacy – compulsory for all FET learners. The curriculum statement for 30 
Mathematical Literacy defines the subject in the following terms: 31 

Mathematical Literacy provides learners with an awareness and understanding of the role that 32 
mathematics plays in the modern world. Mathematical Literacy is a subject driven by life-related 33 
applications of mathematics. It enables learners to develop the ability and confidence to think 34 
numerically and spatially in order to interpret and critically analyse everyday situations and to solve 35 
problems. (DOE, 2003, p. 9) 36 

This definition alongside the broader description of the new subject’s aims in this document places 37 
emphasis on the need to develop life-oriented competences for a range of everyday situations in which 38 
mathematical reasoning and mathematical tools can be brought to bear productively to aid informed 39 
decision making and problem solving. Situational reasoning relating to the identification and selection of 40 
salient features of the context is therefore required alongside and integrated with mathematical reasoning. 41 
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Within this definition, we highlight two features that the broader literature suggests are central to the 1 
notion of mathematical literacy1 that is promoted in the South African rhetoric: firstly, the need for the 2 
reasoning that is implicated within the need to “think numerically and spatially” and to “interpret” and 3 
“critically analyse everyday situations”; and secondly, the need for “problem solving”. Both of these 4 
aspects have significant bodies of literature associated with them in the field of mathematics education – 5 
some focused on the teaching and learning of mathematics, and some specific to discussions of 6 
mathematical literacy. Olkin & Schoenfeld (1994), focusing on mathematics, describe problem solving in 7 
terms of “confronting a novel situation and trying to make sense of it” (p. 43). 8 

Steen (2001), a leading advocate of what he terms “quantitative literacy” comments that centrally what 9 
quantitatively literate citizenship requires is “a predisposition to look at the world through mathematical 10 
eyes … and to approach complex problems with confidence in the value of careful reasoning” (Steen, p. 11 
2). 12 

In both of these quotations – across mathematics and mathematical literacy – reasoning and problem 13 
solving are seen to involve complex problems/novel situations. Further, Steen’s viewpoint suggests that 14 
“complex problems” are essential to developing mathematical literacy as a life-oriented competence.  15 

In this paper our focus is on exploring the extent to which reasoning and problem solving as described in 16 
the literature (Halmos, 1975; Polya, 1962; Steen, 2001) and in the rhetoric of international parallels to ML 17 
(e.g., Functional Mathematics in England) figure within the assessment of ML in South Africa. The 18 
results of the first ML examinations within the new FET National Senior Certificate (taken in 2008 in 19 
which 79% of the cohort attained a ‘pass’ or above (≥ 30%)) were met with some scepticism in public 20 
commentaries (e.g., Jansen, 2009). Earlier in 2008, academic critiques had already raised concerns that 21 
the exemplar papers for ML did not appear to align well with the taxonomy against which assessments 22 
were supposed to be designed, with an overrepresentation of questions focused on the lower levels 23 
(Prince, Frith, & Burgoyne, 2008). 24 

This taxonomy, provided in the Subject Assessment Guidelines (SAG) document (DOE, 2007), is 25 
outlined in the following terms, with guideline percentages given for the distribution of marks across its 26 
levels in ML assessments: 27 

Level 1: Knowing (30% of marks) 28 
Level 2: Applying routine procedures in familiar contexts (30%) 29 
Level 3: Applying multi-step procedures in a variety of contexts (20%) 30 
Level 4: Reasoning and reflecting (20%)  31 

Prior analyses have considered the 2008 ML examination papers in relation to this taxonomy (Umalusi, 32 
2009), and pointed to an over-representation of lower level questions in Paper 2 specifically. Paper 2, 33 
according to the specification in the SAG document, should focus predominantly on Level 3 and Level 4, 34 
with a small proportion of marks allocated to Level 2 whilst Paper 1 focuses solely on Levels 1 and 2.  35 

Given these analyses, our aim in this paper is to consider more specifically whether the taxonomy 36 
provides sufficient openings for developing what the literature base identified above tells us are key 37 
competences for becoming mathematically literate citizens – competences that are also highlighted in the 38 
rhetoric of the South African ML curriculum statement. 39 

In order to facilitate our consideration of this issue, we have structured this paper as follows. We begin 40 
with a brief review of literature that point to reasoning and problem solving as critical to the notion of 41 
mathematical literacy. We then go on to consider the taxonomy structure in some detail, and locate the 42 
areas and levels within which reasoning and problem solving are assessed, and the ways in which other 43 
competences figure alongside these. We argue that shortcomings in this structure in relation to the support 44 
and development of reasoning and problem solving feed through into the kinds of questions that can be 45 
asked within the assessment of ML. These shortcomings are exemplified through the questions that 46 
appeared in the 2008 ML examinations. We conclude the paper with a brief discussion of the implications 47 

                                                      
1 We use the capitalised “Mathematical Literacy” to refer to the South African subject specification and its 
enactments, and the small “mathematical literacy” to refer to a more generalised notion of a life-related competence 
that has a significant literature base associated with it in the field of mathematics education. 
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of this taxonomy structure for the development of the reasoning and problem-solving competences that 1 
align with curricular aims. Specifically, we relate this discussion to how we interpret students’ 2 
performance in the 2008 ML examination. 3 

 4 

Essential competences for mathematical literacy 5 

One of the difficulties in trying to identify essential competences for mathematical literacy is the fact that 6 
a range of interpretations exist as to what mathematical literacy actually is. Jablonka (2003) notes, in her 7 
analysis of a range of perspectives on mathematical literacy, that even the notion of essential competences 8 
(“transferable methodological and process skills” (p. 79) in her terms) is only possible within particular 9 
conceptions of what mathematical literacy is about. She argues that the centrality of problem solving and 10 
reasoning are emphasised in the view of mathematical literacy embodied in the definition and problems 11 
set within the international comparison oriented Program for International Student Assessment (PISA) 12 
(OECD, 2003) tests for example. She points out the imperatives for standardisation across cultures and 13 
measurement of competence within these tests, and argues that these imperatives take precedence over the 14 
need for genuine relevance. Of interest in the South African ML context is the explicit acknowledgement 15 
of the OECD conception of mathematical literacy and its associated view of development in mathematical 16 
literacy competence within the development of the South African ML taxonomy. This suggests that 17 
reasoning and problem-solving development will be central to the assessment framework.  18 

Further insights on the nature of the problem solving needed for mathematical literacy is provided within 19 
the documentation associated with the introduction of Functional Mathematics as a new subject in 20 
England. The definition of Functional Mathematics in England overlaps in significant ways with the 21 
South African definition of ML, containing phrases such as these: 22 

Functional mathematics requires learners to be able to use mathematics in ways that make them 23 
effective and involved as citizens, able to operate confidently in life and to work in a wide range of 24 
contexts. (Qualification and Curriculum Authority, 2007, p. 19) 25 

Problem solving is stressed as a key feature of being able to use mathematics in functional ways, with 26 
some detail provided on the ways in which problems should be presented in order to aid the development 27 
of a functional competence: 28 

It is important that learners are not told, at the time a problem is set, which of the mathematical tools 29 
they have at their disposal will actually be needed. Selecting the right tools is a core aspect of 30 
becoming functional in mathematics. (Functional skills support programme, 2007, pp. 22-23) 31 

And further: 32 

It is very important for learners to experience the need to decide for themselves whether a problem can 33 
be addressed using mathematics, what mathematics might help, and how the problem should be set out 34 
mathematically. (ibid, p. 24) 35 

The importance of the lack of “obvious-ness” of solution routes in order for genuine problem solving to 36 
occur has also been repeatedly emphasised within the mathematics education literature: 37 

...to have a problem means: to search consciously for some action appropriate to attain a clearly 38 
conceived, but not immediately attainable, aim. To solve a problem means to find such action. (Polya, 39 
1962, p. 117) 40 

A further feature of this kind of problem solving in which the solution route is not immediately obvious is 41 
the importance of problem-posing, of asking questions that are appropriate to the context of the problem: 42 

The hardest part of answering questions is to ask them.  […] the chief problem is likely to be “what is 43 
the problem?”. Find the right question to ask, and you’re a long way toward solving the problem 44 
you’re working on. (Halmos, 1975, pp. 466-467) 45 

  46 
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We argue that, both in mathematics and in mathematical literacy, the processes of problem-posing and 1 
problem-solving require reasoning in a range of ways – in asking the right questions, in choosing the 2 
mathematical tools that might assist in answering them, in selecting the most appropriate ways of 3 
representing information using these tools, in working systematically, and in analysing and interpreting 4 
results in context (with contexts usually drawn intra-mathematically in mathematics and from real life 5 
situations in ML). An important feature of this view of reasoning is the way in which it permeates the 6 
problem-solving process, rather than following the problem-solving process. We return to this point when 7 
we consider the Mathematical Literacy taxonomy in the following section. 8 

In the English Functional Mathematics specification, four features of “level differentiation” are outlined 9 
for describing problem demand in the sphere of contextualised problems: 10 

o the complexity of the situation 11 
o the familiarity to the learner of the situation or problem 12 
o the technical demand of the mathematics required 13 
o the independence of the learner in tackling the situation or problem. 14 
(Functional skills support programme, 2007, p. 25) 15 

This model of complexity differs from the South African ML taxonomy in important ways. In the next 16 
section, we consider the outline and specification of this taxonomy in some detail. 17 

 18 

The Mathematical Literacy taxonomy 19 

The headings of the four levels of the ML taxonomy, presented in the introduction, suggest two overt 20 
strands that vary across the levels: a mathematical strand evident within the reference to “knowing” 21 
(mathematical facts) at Level 1 and moving to the use of increasingly complex (or at least lengthy) 22 
procedures (Levels 2 and 3); and a contextual strand that moves from “familiar” contexts (Level 2) to a 23 
“variety of contexts” (Level 3). 24 

Combining content (in terms of facts and procedures) and context oriented complexity within a single 25 
hierarchy appears to suggest that both these aspects become more complex together. This contrasts with 26 
the view presented in Functional Mathematics in the last section where the categories suggest that these 27 
can vary independently of each other, with “technical demand of the mathematics” providing one avenue 28 
for making problems more demanding, and “complexity of the situation” providing another avenue. 29 

A further feature at the outline level is that recall of fact and engagement with mathematical procedures is 30 
followed by “reasoning and reflecting” at Level 4. In the section above and in earlier writing (Venkat, 31 
Graven, Lampen, Nalube, & Chitera, 2009), we have commented that this “deferral” of reasoning – 32 
construed as following the “doing” of mathematics – is problematic from the perspective of the literature 33 
outlined on what it means to be mathematically literate. 34 

The Subject Assessment Guidelines document provides descriptions of each of the taxonomy levels in 35 
Figure 1 (DOE, 2007, pp. 27-28). 36 

Given our focus on reasoning and problem solving as central competences that need to be developed for 37 
mathematical literacy, it was instructive to start by looking for where these features occurred within the 38 
assessment taxonomy. In the terms outlined in our literature review, problem solving appears to figure 39 
only at Level 3 (AMP1). Whilst there is reference to problem solving at Level 2 (ARP1), the emphases on 40 
the “obvious-ness” of the procedure that is needed and the immediate availability of all the required 41 
information would tend to disqualify this reference in the terms outlined in the literature on problem 42 
solving. Problem-posing, in the ways referred to within our overview of the literature, figures only at 43 
Level 4. 44 

  45 
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Figure 1: Description of the Mathematical Literacy assessment taxonomy levels 1 

 2 
Given then that problem solving (using well-known procedures) makes an appearance only at Level 3, 3 
with reasoning deferred to Level 4, we then began to look across the levels at the ways in which 4 
complexity appeared to be conceptualised within the taxonomy. We were able to discern four threads 5 
relating to mathematical development within the structure, with other aspects appearing in much more 6 
localised ways within particular levels. The developmental threads we identified are as follows: 7 

o calculation/procedure 8 
o algebraic competence 9 
o dealing with tabulated information 10 
o knowledge and competence in data representation 11 
 12 
In the following sections we discuss each of these developmental threads, and then go on to identify 13 
aspects that appear in more “singular”, non-developmental ways within the taxonomy structure.  14 

                                                      
2 Abbreviation of level headings and numbering of aspects within levels added by us to facilitate reference. 

Level 1: Knowing (K)2 Level 2: Applying routine 
procedures in familiar contexts 
(ARP) 

Level 3: Applying multi-step 
procedures in a variety of 
contexts (AMP)

Level 4: Reasoning and 
reflecting (RR) 

Tasks at the knowing 
level of the ML 
taxonomy require 
learners to:  
 

K1  Calculate using the 
basic operations including:  
o algorithms for +, -, ×, 

and ÷;  
o appropriate rounding of 

numbers;  
o estimation;  
o calculating a percentage 

of a given amount; and  
o measurement 
 

K2  Know and use 
appropriate vocabulary 
such as equation, formula, 
bar graph, pie chart, 
Cartesian plane, table of 
values, mean, median and 
mode.  
 

K3  Know and use 
formulae such as the area 
of a rectangle, a triangle 
and a circle where each of 
the required dimensions is 
readily available.  
 

K4  Read information 
directly from a table (e.g. 
the time that bus number 
1234 departs from the 
terminal). 

Tasks at the applying routine 
procedures in familiar contexts 
level of the ML taxonomy require 
learners to:  
 

ARP1  Perform well-known 
procedures in familiar contexts. 
Learners know what procedure is 
required from the way the 
problem is posed. All of the 
information required to solve the 
problem is immediately available 
to the student.  
 

ARP2  Solve equations by means 
of trial and improvement or 
algebraic processes.  
 

ARP3  Draw data graphs for 
provided data.  
 

ARP4  Draw algebraic graphs for 
given equations.  
 

ARP5  Measure dimensions such 
as length, weight and time using 
appropriate measuring 
instruments sensitive to levels of 
accuracy.  

Tasks at the applying multi-
step procedures in a variety of 
contexts level of the ML 
taxonomy require learners to:  
 

AMP1  Solve problems using 
well-known procedures. The 
required procedure is, 
however, not immediately 
obvious from the way the 
problem is posed. Learners 
will have to decide on the most 
appropriate procedure to solve 
the solution to the question 
and may have to perform one 
or more preliminary 
calculations before 
determining a solution.  
 

AMP2  Select the most 
appropriate data from options 
in a table of values to solve a 
problem.  
 

AMP3  Decide on the best 
way to represent data to create 
a particular impression.  

Tasks at the reasoning 
and reflecting level of the 
ML taxonomy require 
learners to: 
  

RR1  Pose and answer 
questions about what 
mathematics they require 
to solve a problem and 
then to select and use that 
mathematical content.  
 

RR2  Interpret the 
solution they determine to 
a problem in the context 
of the problem and where 
necessary to adjust the 
mathematical solution to 
make sense in the context. 
 

RR3  Critique solutions to 
problems and statements 
about situations made by 
others.  
 

RR4  Generalise patterns 
observed in situations, 
make predictions based on 
these patterns and/or other 
evidence and determine 
conditions that will lead 
to desired outcomes. 
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Calculation/procedure 1 

Across the four levels of the taxonomy, there is recurring reference to calculations and procedures. At the 2 
most basic level, the four taxonomy labels indicate that development within this thread proceeds along the 3 
lines of knowledge/recall of procedure (K), application of routine procedures (ARP), application of multi-4 
step procedures (AMP), identifying the appropriate questions to ask in order to identify procedures to 5 
solve problems using mathematics as a tool (RR).  6 

Whilst this labeling indicates a rather mathematically-based progression across levels, closer reading of 7 
the descriptions indicates that such mathematically-oriented progression is intertwined with the following 8 
three sub-threads: 9 

o The degree of “known-ness” of the procedure to be applied 10 
o The degree of “immediate availability” of the information required to use the procedure to solve the problem 11 
o The degree of “obvious-ness” around what procedure to use 12 

We now discuss each sub-thread in turn. 13 

 14 
Degree of “known-ness” of the procedure to be applied 15 
The descriptions across the levels point to a progression from “basic operations” to “well-known 16 
procedures” to “identification of” an appropriate mathematical procedure, which may also be well-known 17 
or even basic. The listing of basic arithmetical operations under K1 suggests that a school mathematics 18 
curriculum hierarchy of procedure may underlie the way progression within this sub-thread is interpreted. 19 
As such, there is an overlap between this sub-thread and the notion of the “technical demand of the 20 
mathematics” that is presented as one variable within problem demand in Functional Mathematics. 21 
 22 

Degree of “immediate availability” of the information required to use the procedure to solve the problem. 23 
The descriptions under ARP1 and AMP1 allude to this as a developmental sub-thread of application of 24 
procedures. The lack of any allusion to contextualisation under K1 suggests that required information 25 
may be directly given within decontextualised questions – a suggestion confirmed by the presence of such 26 
questions in Paper 1 in the 2008 ML examination, in spite of advice to teachers to avoid this practice in 27 
the SAG: “When teaching and assessing Mathematical Literacy, teachers should avoid teaching and 28 
assessing mathematical content in the absence of context” (DOE, 2007, p7). 29 
 30 

Degree of “obvious-ness” around what procedure to use 31 
Comments within the descriptions for ARP1 and AMP1 suggest that this factor represents a key 32 
discriminator between Level 2 and Level 3 questions. When combined with the lack of contextualisation 33 
in some Level 1 questions, this sub-thread relates to the degree of explication of specific procedures in the 34 
statement of the question. This suggests that at Levels 1 and 2, direct pointers towards the required 35 
mathematics are acceptable, resulting in heavily scaffolded questions in the examination papers that 36 
emphasise and test calculation skills, thus vitiating the assessment of problem solving. 37 

Several interesting issues are raised within the calculation/procedure developmental thread and the sub-38 
threads within it in the context of the South African ML curriculum. First there is the mathematical 39 
orientation of the progression – a feature that appears to contradict the curriculum specification within 40 
which overt mathematical progression is limited, and explicitly acknowledged: 41 

For Mathematical Literacy, the Assessment Standards do indicate progression from grade to grade. 42 
However, this progression is not markedly evident in some of the Assessment Standards. The 43 
complexity of the situation to be addressed in context, through using the mathematical knowledge and 44 
ways of thought available to the learner, is where the extent of the progression needs to be ensured. 45 
(DOE, 2003, p. 38) 46 

The framing of progression in terms of mathematical procedure within the taxonomy is somewhat 47 
problematic. We acknowledge and accept that this progression is both a necessary and useful part of the 48 
frame of mathematical literacy development – that recognising and unpacking mathematical progression 49 
within the context of problem solving provides both rationales for mathematical development and a range 50 
of increasingly sophisticated tools for making sense of situations. However, to allow mathematical 51 
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progression to dominate the assessment of a curriculum that is oriented towards quantitative and 1 
mathematical reasoning for life-situations appears akin to the “tail wagging the dog” and runs the risk of 2 
diminishing the emphasis on understanding everyday contexts that is central to the curriculum rhetoric. 3 

Secondly, the progression appears to move from an emphasis on basic arithmetical procedure into 4 
directed straightforward procedures, and then onto less directed and more complex procedures. The 5 
calculating thread therefore appears to build in procedural complexity alongside a “degree of explication” 6 
strand, with procedures getting more complex and diminishing explication of the procedure to use 7 
occurring together. This suggests that these two features cannot be varied independently. This view tends 8 
to contradict Steen’s position that quantitative literacy more often involves “real data and uncertain 9 
procedures but require[s] primarily elementary mathematics” (Steen, 2001, p. 6). 10 

Here, Steen’s view suggests that a diminishing degree of explication – again related to the degree of 11 
scaffolding - of specific procedures ought to be an overarching development thread in order to meet the 12 
goals of mathematical literacy, with limited shifts towards more complex procedures. 13 

The shift from a directed emphasis on basic calculation towards the selection and use of mathematical 14 
tools within a problem-solving frame correlates with what has been presented by some writers as a 15 
potential model of how sophistication builds up in mathematical literacy. Maguire and O’Donoghue 16 
(2003) present an “organising framework” for numeracy within which numeracy builds from a “formative 17 
phase” with an emphasis on arithmetic skills, into a “mathematical phase” in which the mathematics in 18 
everyday situations is made explicit, and then into an “integrative phase” where mathematics, 19 
communication and culture have to be synthesised in context. This view though, tends to be contradicted 20 
by findings in mathematics education located within a situated learning perspective (Boaler, 1997; 21 
Scribner, 1984). Both these studies suggest that people can become good (efficient and effective) at 22 
activities that they practise – designing efficient distribution schedules in Scribner’s case and non-routine, 23 
mathematics problems in Boaler’s case. Given that the taxonomy allows for 60% of the marks in ML 24 
assessments, even at Grade 12 level, to come from basic arithmetic and simple calculation without 25 
involving reasoning or problem solving in context, our concern is that there simply is not enough pressure 26 
to infuse ML learning with these latter features. Instead, the mathematical calculation thread allows for 27 
procedural mathematics to dominate in ways that often work against the aims of the curriculum. 28 

 29 
Algebraic competence 30 

This developmental thread appears somewhat incongruous when considered alongside the advocacy in 31 
policy documents for work in ML to be led by the need to “engage with contexts rather than applying 32 
Mathematics already learned to the context” (DOE, 2003, p. 42) – given that the emphasis appears to be 33 
on mathematically focused progression located within one particular domain of mathematics – algebra. 34 
Once again, whilst there are stronger indications here of an algebraically focused interpretation of 35 
progression, i.e. knowledge and use of formulae (K3) to solving equations algebraically (ARP2) or 36 
drawing algebraic graphs for equations (rather than situations) (ARP4) to generalising patterns in context 37 
(RR4), statements incorporate the degree of immediacy of information needed to apply algebraic tools as 38 
part of the increasing complexity of problems (e.g., K3).  39 

 40 
Dealing with tabulated information 41 

Information presented in tabular form curiously seems to receive special attention within the taxonomy, 42 
rather than a more general competence in dealing with numerical information from a variety of sources 43 
and representations (including graphs and written text) that is often highlighted in literature dealing with 44 
the nature of mathematical or quantitative literacy (e.g., Steen, 2001). Progression within this 45 
developmental thread appears to be delineated primarily in terms of the degree of interpretation needed to 46 
“select” appropriate information from a table in order to answer a question or solve a problem. Thus, at 47 
the knowing level, the information needed can be found “directly” from the question in the table provided 48 
(K4), whilst a higher level competence in this strand would require some interpretation in order to select 49 
the “most appropriate data from options in a table” (AMP2). The notion of immediacy is therefore present 50 
within this thread as well.  51 
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Knowledge and competence in data representation 1 

The hierarchy presented in this developmental thread appears to suggest that low level competence is 2 
evident in knowledge and use of some basic representations (bar charts, introduced in the foundation 3 
phase content mathematics curriculum), are mentioned specifically – K2). This proceeds into an 4 
unspecified drawing of “data graphs for provided data” (ARP3), and then into a more critical engagement 5 
with the kinds of data presentation that might support specific positions or arguments (AMP3). Critiquing 6 
provided data presentations can potentially fall within the remit of RR3, but is not indicated as the final 7 
progression of this thread. Within this thread too therefore, the “production” of mathematics prevails at 8 
Levels 1 and 2, with critical engagement appearing only at Level 3, implying that reasoning will not be 9 
assessed in the reading of tables or the drawing of graphs. 10 

 11 
Non-progressing descriptors 12 

This identification of developmental threads and some cross-cutting sub-threads leaves some aspects of 13 
the specification of the taxonomy as yet untouched. The “missing” descriptors appeared to us to stand in 14 
much more isolated ways within particular levels without a sense of progression attached to the skill or 15 
competence presented. Examples of this include the emphasis on measurement which appears in ARP5. 16 
Whilst this descriptor can be interpreted as following on from “given” dimensions which feature in K3, 17 
the activity of measuring appears at this point only and appears to qualify as a routine procedure 18 
regardless of the context of the actual measurement. Similarly, the need for “one or more preliminary 19 
calculations before determining a solution” (AMP1) appears to push a question into the third level 20 
irrespective of the actual calculations required. The practical consequence is that the stringing together of 21 
routine calculations is construed as indicative of a high level of mathematical literacy. 22 

The key location for non-progressing descriptors though occurs within the “reasoning and reflecting” 23 
level. Problem posing and interpretation or adjustment of answers in context only figure at this level, with 24 
lower levels providing few, if any, handles for the development of this kind of reasoning and critique 25 
capacity. As stated earlier, we have expressed our concern that the taxonomy appears in this way to 26 
separate the “doing” of ML from the “reasoning” required for ML (Venkat et al., 2009). One consequence 27 
of this separation is that lower level reasoning skills are rendered invisible, for example in question 2.2.2 28 
in Example 1 (see further on), which requires candidates to visualise where a maximum height occurs as 29 
the arms of a wind turbine circulate. Developing such visualisation skills is seen as an important 30 
component of reasoning for both mathematical literacy (de Lange, 1999) and for mathematics (Presmeg, 31 
1986). 32 

A second consequence is that, given that reasoning and reflecting is understood to “follow” the 33 
calculating of answers, reasoning questions tend to focus narrowly on rather limited interpretation and 34 
commentary on previously calculated answers.  Question 2.4.3 in Paper 2, asking candidates to comment 35 
on whether a payment option involving a deposit and monthly instalments or one involving taking out a 36 
loan for an outright purchase is preferable, following step by step calculations for the previous steps 37 
provides a good example of this kind of limited interpretation demand. Essentially in this view, reasoning 38 
is reduced to a “reflection on prior calculation in context” – calculations that are so extensively scaffolded 39 
that the need for reasoning about the chain of steps required to make an informed decision is effectively 40 
removed.  41 

In summary, two aspects occur recurrently in this analysis of the taxonomy – firstly, a tendency towards 42 
procedural orientations to progression in several of the threads, and secondly, the notion that the degree of 43 
“immediacy” of information availability and/or “explication” of the required mathematical tools provides 44 
a sub-thread contributing to mathematical progression. Key problems, in our view, relate firstly to the 45 
lack of a developmental thread across taxonomy levels related to openings for reasoning and problem 46 
solving, compounded by the interpretation of reasoning as a “deferred” activity understood in rather 47 
limited ways. Secondly, the emphasis on mathematically-oriented progression is problematic in assessing 48 
a curriculum that contains a limited degree of mathematical development in its specification. This tends to 49 
result in a somewhat arbitrary breakdown of procedures into taxonomy levels.  50 

This breakdown is made much more explicit in the taxonomy version provided in the Examination 51 
Guidelines document which ML teachers are encouraged to use, in which, for example, calculating a 52 
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percentage of a given quantity qualifies for a Knowing (K) level competence, whilst calculating a 1 
percentage increase or decrease of a given quantity falls with the Applying routine procedures (ARP) 2 
level. Anomalies result from this kind of breakdown in mathematical terms – a percentage reduction 3 
problem (e.g., to calculate the effect of reducing R400 by 12%), can be calculated as 0,88  R400 for a 4 
one-stage solution or as a two-stage solution by calculating the 12% amount and subtracting. The first 5 
route in procedural terms carries exactly the same technical demand as a Level 1 question, but some 6 
mathematical reasoning about the structure underlies this calculation. The second route makes the 7 
procedure ‘longer’ – and the emphasis on moving from “routine procedures” to “multi-step procedures” 8 
in the Level headings of the taxonomy suggests that it is this “length of procedure” orientation that 9 
prevails in the taxonomy, rather than the reasoning underlying the more efficient procedure. As such, the 10 
kind of reasoning that underlies the more efficient procedure in the first solution tends to remain invisible 11 
in the taxonomy frame. In turn, this invisibility makes it unlikely that such reasoning will be encouraged 12 
in ML classrooms. 13 

In the next section, we compare three questions from the 2008 ML examinations which exemplify the 14 
problems we have identified in this section. The first example is from Paper 1 which aims to assess ML at 15 
Levels 1 and 2, while the other examples are from Paper 2, aimed at assessing ML at Levels 3 and 4. 16 

 17 

Questions from the 2008 Mathematical Literacy examinations 18 

Example 1 – Paper 1, question 2.2 19 

2.2 

  20 
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 1 

 2 

Commentary 3 

We note that within the second diagram given, a mathematical representation of the wind turbine is 4 
provided to candidates. This provision has several consequences. Firstly, the need to engage with the 5 
context through making sense of the photo representation of the wind turbine, and connecting this 6 
representation to the textual information given beneath it is diminished. The need to select the salient 7 
features of the context in order to create a mathematical model is therefore completely removed. Further, 8 
the reasoning load required to answer question 2.2.1 to 2.2.4 is also consequently reduced, although as we 9 
have pointed out, low-level visualising is still required to “imagine” the location of a blade to get the 10 
maximum height above ground (in spite of the fact that the taxonomy renders this invisible). 11 

We argue that the lack of openings for problem representation, reasoning and problem solving in the 12 
formulation of questions such as this one follow from the structure of the taxonomy. Paper 1 is structured 13 
so that it contains only questions at Levels 1 and 2 of the taxonomy, and our analysis above indicates that 14 
neither reasoning nor problem solving are represented at these levels. Essentially therefore, given the 15 
mathematical model and the formulae needed for the circumference and area of a circle, the question 16 
becomes a test of the candidate’s ability to calculate – again, in line with the orientation of the taxonomy, 17 
but much less in line with the spirit of the curriculum. 18 

  19 



Hamsa Venkat; Mellony Graven; Erna Lampen; Patricia Nalube 

53 

Example 2 – Paper 2, question 2.4 1 

2.4 Thandi decides to buy a dishwasher based upon the advertisement below. 

  

 

 2.4.1 Suppose Thandi decides to buy the dishwasher using the instalment option.  

  (a) What is the balance owing after paying the deposit? 

  (b) Calculate the total cost of the dishwasher. 

 2.4.2 Suppose Thandi takes a loan from ABC Bank for the full cash price of the dishwasher.  She is 
charged interest of 18% p.a. compounded monthly and agrees to repay the loan over two years 
in equal monthly instalments. 

Use the formula A = P(1 + i)n to calculate the total amount to be paid back, where: 

A  =  total amount to be paid back 
P  =  loan amount  
i   =  monthly interest rate 
n  =  number of months over which the loan will be taken 

 2.4.3 Which method of payment would you advise Thandi to choose?  Give a reason for your 
answer. 

 2 

Commentary 3 

Essentially this Paper 2 question asks candidates to calculate and then compare across the three options 4 
available (with sub questions directing each calculation), and to then select one and provide some kind of 5 
justification for it. 6 

Questions such as 2.4.3, which asks candidates to look over a prior sequence of well structured 7 
calculations, and to justify a selection in some way from these appears to be the most common way in 8 
which “reasoning and reflecting” questions are incorporated into the ML examination. None of these 9 
skills appears to us to merit the conferral of a high level of reasoning in relation to mathematical literacy. 10 
However, given the lack of a developmental thread related to reasoning, and the scaffolding away of a 11 
more genuine orientation to problem solving, such questions are by default classified at Level 4 within the 12 
taxonomy. 13 

14 
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Example 3 – Paper 2, question 4.2 1 

 2 

 3 

Commentary 4 

This question is also drawn from Paper 2, which should be primarily constituted by tasks at Levels 3 and 5 
4 of the taxonomy. The phrasing of the initial context in question 4.2 draws students into the reading of a 6 
relatively complex text, yet with all information explicitly provided. Much of the remaining complexity is 7 
removed by the structure of the sub-questions in question 4.2.1. We point out here the step by step nature 8 
of the scaffolding provided in question 4.2.1 in order to get to a value for how much Lebo has left in hand 9 
after expenses each month. As in the previous example, problem representation skills are reduced 10 
significantly through both the scaffolding and the provision of a table for collation, and each part of the 11 
question requires relatively directed and relatively basic calculation skills. The provision of Annexure C 12 
containing a table formatted to allow each of the expenses to be listed in rands and cents in a sensible 13 
order, completely removes the Level 3 requirement to “decide on the best way to represent data to create 14 
a particular impression.”  15 

As with the questions in Examples 1 and 2, we note the potential of this scenario to open up avenues for 16 
complex problem solving, but in the over-scaffolding that follows, much of the potential for decision-17 
making and interpretation is removed. The difficulty essentially, therefore, lies not in the choice of 18 
problem contexts, but in the design of the questions within them, which seem to be designed to mimic the 19 
taxonomy in their unfolding. 20 

 21 

Conclusions 22 

Widespread evidence of assessment driving teaching (Clarke, 1996) indicates that the taxonomy upon 23 
which ML assessments are designed has implications for teaching. Our analysis of the taxonomy reveals 24 
that an emphasis on problem solving only really comes into play at Level 3 of the taxonomy and yet the 25 
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literature and curriculum documents suggest that this is the crux of the aim of ML. The emphasis on 1 
routine calculations is marked overtly at Levels 1 and 2 – which by definition then, fall outside the realm 2 
of problem solving. Thus immediately visible from this taxonomy is the way in which the key aims of 3 
ML as given in the definition are located primarily in Levels 3 and 4. Indeed the definition of ML is that 4 
it is a subject driven by life related applications which enables learners to think numerically and spatially 5 
“in order to interpret [Level 3] and critically analyse [Level 4] everyday situations and to solve problems 6 
[Level 3]” (DOE, 2003, p. 9, emphasis and levels added). In relation to the specification that Paper 1 only 7 
includes questions at Level 1 and Level 2 of the taxonomy we have to question the validity of such a 8 
paper in assessing the aims of ML as given by the definition. As we have pointed out, some aspects of the 9 
literature point to difficulties with interpreting the basic calculation focus of Levels 1 and 2 as an 10 
appropriate lead in to service the problem solving and reasoning demands of Levels 3 and 4.  11 

Furthermore if across the two papers 60% of the marks can be obtained without any problem solving, 12 
mathematical interpretation and reasoning, then again the validity of what a ‘pass’ in this subject means in 13 
relation to the curriculum statement is called into question. In this respect the very high pass rate in 14 
mathematical literacy is unsurprising. Perhaps what it indicates is that 79% of all learners who wrote the 15 
examination were able to perform/demonstrate basic mathematical operations, calculations/ skills and 16 
apply them to some extent in familiar situations where the necessary procedure is relatively obvious from 17 
the information given (which is immediately available). Perhaps the proportion of learners who received 18 
more than 60% for the examination is a better reflection of those who were able to demonstrate some 19 
competence in meeting what the curriculum rhetoric suggests as requirements to be mathematically 20 
literate.  21 
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