Basis of Population Genetics

Gregor Mendel

- Gregor Mendel was a monk who studied the garden pea (*Pisum* sativum).
 - Background in math & statistics
 - Emphasized
 experimentation
 Replicates
 - Looked for patterns in his data

Gregor Mendel Mendel worked with several traits including flower color. Started with true breeding parents. All offspring were purple. Next generation - white reappeared. 3:1 ratio

Gregor Mendel

 Mendel discovered that characteristics pass from parent to offspring in form of discrete packets called genes.

- Exist in alternate forms alleles.
- Some prevent expression of others. • Dominant vs. recessive
- Phenotype what the plant/fish looks like.
 Purple or white
- Genotype which alleles are actually present. • PP, Pp or pp

Population Genetics

- Populations have genetic variation.
- Changes in the frequencies of alleles within a population is required for evolutionary change.
- Population genetics allows us to study how common a trait is in a population, and how that may change over time.

Population genetics

1. the translation of Darwin's three principles into genetic terms

a). Variation: Among individuals in a population there is phenotypic and genotypic variation

b). Heredity: Offspring are more similar to their parents than to unrelated individuals

c). Selection: Individuals having some phenotypes are more successful at surviving and reproducing than others

Population genetics

- 2. Study of heredity of traits controlled by one or a few genes in a population
- a) description of genetic structure of a population (patterns of genetic variation found among individuals in a group)
- b) examination of how genetic structure varies in space and time
- c) evaluation of the processes that are responsible for producing genetic variation

Population genetics

3. Practical applications include importance for conservation biology and biodiversity

4. good example of the uses of mathematical theory in biology Strongly dependent on <u>mathematical models</u> (which have been more successful than most areas of mathematical biology)

What is a population?

A population is a subdivision of a species

-A community of individuals where potential mates are usually found

- shares a common gene pool
- has continuity through time
- is linked by bonds or mating and parenthood

Population Genetics

- •The genetic study of the process of evolution
- •Deals with frequencies of alleles & genotypes in breeding populations. It also deals with selective influences on the genetic composition of the population (*phenotypes*)

Aims

- To measure rates of change in the genetic composition of populations
- Helps to predict what alleles frequencies will be in the absence of evolutionary change.

Hardy Weinberg

 Hardy-Weinberg principle states that in a population mating at random in the absence of evolutionary forces, allele frequencies will remain constant from generation to generation.

p = frequency of the most common allele
q = frequency of the less common allele

Genetic Structure of Populations
Genotype frequency
The proportion of a population that has one genotype
relative to all genotypes at a species locus $f(particular genotype) = \frac{\# individuals with that genotype}{total \# individuals}$ Homozygotes: The two alleles are in the same state (AA, aa)
Heterozygotes: The two alleles are different (Aa)

The Hardy-Weinberg principle (law)

Predicts the expected genotype frequencies using the allele frequencies in a diploid Mendelian population.

States that the frequencies of allele in a population will remain constant unless acted upon by outside agents of forces.

describes the genetics of non-evolving populations.

A non-evolving population is said to be in Hardy-Weinberg Equilibrium

In a population with diallelic locus (alleles A and B), if the frequency of one allele (A) is \mathbf{p} and the other allele (B) is \mathbf{q} , then.

	Males		
Females	Freq (A) = p	Freq (<mark>B</mark>) = q	
Freq (A) = p	Freq (AA) = pp	Freq (AB) = pq	
Freq (B) = q	Freq (AB) = pq	Freq (B) = qq	

Punnett square

HWE p²+2pq+q² = 1 and p+q = 1

- ${\bf p}$ = frequency of the $\underline{\text{dominant allele}}$ in the population
- ${\boldsymbol{q}}$ = frequency of the <u>recessive allele</u> in the population
- **p²** = percentage of <u>homozygous dominant</u> individuals
- q² = percentage of <u>homozygous recessive</u> individuals
- 2pq = percentage of <u>heterozygous</u> individuals

Example one locus (AA, Aa and aa) If frequency of A gametes is 0.2. What is the proportion of the population that is the Aa genotype? If frequency (A) = p and frequency (a) = q, Hence; $\mathbf{p} + \mathbf{q} = 1$: thus 1 - 0.2 = q = 0.8p² 1 = 1 = + 2pg = 1 2pq = 1 - 0.68 = 0.32 or $2pq = 2(0.2 \times 0.8) = 0.32$

Calculating the gene frequency (two ways)					
Suppose that we have 200 individuals: 83 AA, 62 AB, 55 BB					
Method 2 . Calculate what fraction of genes/alleles in the parents that are A :					
Genotype	Number	A's	B's		
AA	83	166	0		
AB	62	62	62		
BB	55	0	110		
		228	172		
Ansv	ver. 228/4	400 = <u>0.57</u>	A		

Genetic variation within a population

A. <u>Polymorphism</u> = genetic variation; the occurrence of several phenotypic forms of a character associated with one locus (gene) or homologues of one chromosome

Types of polymorphisms that population geneticists examine;

- 1. Morphological polymorphisms
- 2. Chromosomal polymorphisms
- 3. Immunological polymorphisms
- 4. Protein polymorphisms
- 5. DNA sequence polymorphisms

B. <u>Heterozygosity</u> = measure of the frequency of the heterozygote genotype at a loci or at multiple loci

What makes a population evolve or disrupt the HWE equilibrium?

• mutation

spontaneous change in DNA

- migration
- creates new alleles

stronger selection

against mutant allele

ultimate source of all

- natural selection
- genetic drift
- non-random mating

more mutations → higher frequency per generation of mutant allele at

genetic variation

- equilibrium → lower frequency
- of mutant allele at equilibrium

What can change population genetic structure?

- mutation
- migration/gene flow
- natural selection
- genetic drift
- non-random mating

Will significantly change allele frequency if some alleles tend to migrate more often than others

Natural selection

Some alleles will be preferentially represented in the next generation $% \label{eq:some_state}$

• Traits that result in differential success in reproduction

- Includes traits that increase survival an individual that lives longer will reproduce more than a shorter lived one

– And traits that help the individual reproduce more often sexual selection

- · Leads to adaptive variation
- Genetic variation is the raw material for natural selection

- Natural selection will act upon the variation that is already there

Forms of genetic drift

- 1. Founder effect
 - a small group leaves a large population and starts a new population
 - only some alleles are sampled from the gene pool

Of the five conditions for H-W equilibrium, which ones change allele frequency, and which ones change phenotypic frequency? • Mutation (negligible in most pop) Allele freq • Natural selection • Migration • Genetic drift • Non-random mating Phenotype freq

NOTE!

• The Hardy-Weinberg law rarely holds true in nature (otherwise evolution would not occur).

 Organisms are subject to <u>mutations</u>, <u>selective</u> <u>forces</u> and they <u>move</u> about, or the allele frequencies may be different in <u>males and females</u>.

• <u>Gene frequencies are constantly changing</u> in a population, but the effects of these processes can be assessed by using the Hardy-Weinberg law as the starting point.

• HWE is the null hypothesis of evolution

Population Structure

- A population is considered structured if:
- genetic drift is occurring in some of its subpopulations
- migration does not happen uniformly throughout the population, or
- mating is not random throughout the population.

A population's structure affects the extent of genetic variation and its patterns of distribution.

Factors causing genotype frequency changes or evolutionary principles

- Selection = variation in fitness; heritable
- Mutation = change in DNA of genes
- Migration = movement of genes across populations
- · Recombination = exchange of gene segments
- Non-random Mating = mating between neighbors rather than by chance
- Random Genetic Drift = if populations are small enough, by chance, sampling will result in a different allele frequency from one generation to the next

Assumptions (HWE)

- 1. The absence of evolutionary process (e.g., mutation, migration, drift, selection) affecting the allele frequencies in the population
- 2. Random mating- the probability of mating between individuals is independent of their genetic constitution—no assortative mating
- 3. Large population size i.e., population size is effectively infinite. To reduce sampling error with generations
- 4. Males and females have similar allele frequencies.
- 5. There is no selection. Lack of differential survival and reproductive success i.e. All genotypes reproduce with success.
- 6. Organism is diploid

How the forces of evolution Increase (+) or decrease variation between populations

Force	Variation within populations	Variation between populations
Inbreeding or		
genetic drift		+
Mutation	+	
Migration	+	<u> </u>
Selection		
Directional	-	+/-
Balancing	+	-