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Lecture 3 – Inference through hypothesis testing 

 

There are many ways to draw inference in statistics.  The most popular is hypothesis 
testing, as advocated by Sir Ronald Fisher. 
 
In many ways, the formal procedure of hypothesis testing is much like the 
hypothetico-deductive scientific method advocated by Sir Karl Popper.  
 
The scientist: 

 observed nature,  
 formulates a theory,  
 and then tests this theory against observation.  

 
In a statistical context, the scientist may pose a theory concerning one or more 
population parameters – for example that that they equal specified values.  Then the 
scientist samples the population and compares observation against the theory. If the 
observations disagree with the theory then the scientist rejects the theory, else the 
scientist concludes that either the theory is true or that sample did not detect the 
difference between the real and hypothesized values of the population parameters. In 
this instance, the theory is a hypothesis. 
 
The hypothesis 
With hypothesis testing, we divide all possible interpretations of an experiment into 
two alternatives: a null hypothesis and an alternative hypothesis.  
 

 A null hypothesis ( 0H ) is the statement that there is "no effect" or of the 

"status quo" or simply that what quantities we have observed are drawn by 
random chance.   

 
 The alternative hypothesis ( aH ) in turn is that there is an effect of some factor 

influencing the population or that the status quo is not in fact true. (Always 
bear in mind that there can be an infinite set of alternate hypotheses). 

 
For example, if we wish to test that men and women have different mean heights, the 
null hypothesis would state that "Men and women are the same height on average." 
The alternative hypothesis would be "Men and women are NOT on average the same 
height."  

This null hypothesis can be expressed mathematically as: 

femalesmalesH  :0  

where the alternative hypothesis is 

femalesmalesaH  :  
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We use the null hypothesis to generate the distribution of what sample statistics would 
look like, if the null hypothesis were true. We then compare the actual statistic we 
measured to this distribution of possible sample statistics to see how unusual it would 
be, if this null hypothesis were true.  

 

Example: 
What about a situation where you want to assess whether or not the mean size of a 
fish species is 110 mm.  If we sampled the population and found that the mean was 
105 mm then from Figure 3.1 below this would not be an unexpected result given that 
the distribution under the null hypothesis.  Alternatively, if we found that the sample 
mean was 130 mm, then this would be odd and we would possibly reject the notion 
that the sample was from the null distribution.   
 
So if we get a test statistic which would be very unlikely if the null hypothesis were 
true, we then can infer that the null hypothesis is probably not true. 
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Figure 3.1. The null distribution and observed sample means.  Are the means odd or not 
given you hypothesis about the population?  
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Figure 3.2. The probability, assuming that the null hypothesis is true, of getting a sample 
mean of at least 130.  The light grey area represents 2% of the grey area – the area of the 
probability distribution. Finding this sample mean would therefore probably only happen in 2% 
of many, many samples.  

 

Let us be more specific about what we mean by "odd" or what is the probability of 
getting a result as extreme or more in the possible range of results statistics as the one 
we actually got? This illustrated in Figure 3.2 where the probability of getting a 
sample mean of 130 or more is in fact 2%.  Therefore we can conclude that we are 2% 
sure that the sample mean is probably NOT from the null distribution and reject the 
null hypothesis of 110 mm. This is because if we conducted this experiment over and 
over and over again, the sample means would be different from the null hypothesized 
mean about 98% of the time. We call the 2%, the level of significance.  In most 
instances a significance level of 5% would suffice. 

 

Towards a general statistic 
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The height example would be one possible option of the infinite number of data set 
available.  We therefore need a simple distribution against which to compare our 
average.  
 
If the null hypothesis were true, then we can often describe the probability distribution 
of different types of samples.  This would be through our T statistic - 
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 which has a t-distribution with (n-1) degrees of freedom. 

 
If we go back to Figure 2.2 then we are assessing the difference between averages.  
Therefore, as we know that the averages of many, many samples are Normally 
distributed then we can compare and average to a null distribution constructed from 
averages.    
 
 
 
Hypothesis testing recipe 
 
The steps involved in conducting a hypothesis test are therefore: 
 
Before data collection/observation: 

 State the hypotheses aHH  and 0 ; 

 Choose and fix the significance level of the test (or ); 
 Establish the critical region of the test corresponding to  where one would 

consider a test statistic to be odd. 
 
After data collection/observation: 

 Calculate the observed test statistic from the sample; 
 Compare the calculated statistic with the null distribution 
 Make a decision about the hypotheses. 


