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Lectures 2 & 3 - Population ecology mathematics refresher 
 

 

To ease the move into developing population models, the following mathematics 

cribsheet is supplied.  If in doubt – read a mathematics textbook! 

 

 

1. Exponents and logarithms 
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2. Calculus  

 

Differentiation  

 

To calculate the rate-of-change of a function with respect to variable we use 

differentiation. This amounts to calculating the slope of the tangent to the function. 

Alternatively we can estimate the maximum value of a function with respect to a 

variable of interest. 

 

In its most simplest form 

1        bb xab
dx

dy
axy  

 

 

 
Example 1: Differentiate the function  y = 2x4-3x-3. 

    3803124 31114   xxx
dx

dy
 

 
 

 

When differentiating logarithms and exponents the following rules apply 

b
xdx

dy
xy b 

1
       ln  

xx e
dx

dy
ey           

(Note that xbxy b ln  ln  ) 

 

 

Chain rule 

 

This is possibly the most important rule in differential calculus.  Use the chain rule 

when you have to differentiate a function   xgf
dx

dy
  that is itself a function of the 

variable that is being differentiated.  Example functions are e , and ln .  

  
    xg

dx

d
xg

dx

d

dx

xgdf
 .  The rule can also be expressed as 

dx

du

du

dy

dx

dy
 given 

that there has been a transformation of the function  xgu  . 
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Example 2:  Differentiate the following two functions using the Chain Rule. 

1xy 2     and   4x)ln(2xy 3   

 

The solutions to the following equations are as follows: 

 

1  let  2  xu       xxu 42   3   

x
dx

du
2        46 2  x

dx

du
 

 

Therefore as 
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1
 2  x
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Now back-transform such that  
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Product and quotient rules 

 

Often the function to be differentiated has  
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Example 3:  Calculate  bxaxe
dx

d   using the product rule. 
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Example 4:  Calculate 

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



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d
 using the quotient rule. 
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Examples 

 

 

1. Differentiate the function   4910 2  xxxf  

 

  920 2  xxf  

 

 

2. Differentiate the function     327 23  xxxf  
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3. Differentiate the function     327 23  xxxf  
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4. Differentiate the function   4
3


 sy  
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5. Find  xf   if xxy   

 

First, let xxey ln  
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6. Find  xf  if    3 2
52ln  xxf  

 

Let  252  xz  
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7. Find  xf  if     3
5416ln  xxxf and 

6
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8. Find
dx

dy
if 12  xey  
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Integration  
 

Integration is the opposite of differentiation. In calculus there is a method used to 

back-calculate the derivative of a function to its original form.  If    
dx

xf
xf  then 

the antiderivative of  xf  is  xf .   

 

In its simplest form 

 
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C
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.  It is crucial to always have the dx  and the integration constant C 

in your expression and solution. 

 

We can check our solution by taking the derivative  
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Integration, as with differentiation, has the following rules: 

 

If we wish to integrate between two values say between some lower, L, and upper, U, 

bounds then the “Fundamental Theorem of the Calculus” applies. It is defined as 

        

U

L

U

L
LfUfxfdxxf '  

 

The Fundamental Theorem of the Calculus is also used to estimate the area under a 

curve or a volume if at least two-dimensions are integrated. 
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Example 5:  Calculate  dx2x between the bounds 1 and 3. 
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3. Finding the maxima/minima of a function  

 

The maximum or minimum of a function can be found suing differentiation. For 

example, if we have a continuous function f(y) the maxima/minima, within range of x 

values aka the domain, are estimated easily by differentiating f(y) with respect to x, 

setting the equation to zero and then solving for x. These x values are then replaced 

into the original equations and solved for the corresponding y values.  If there is more 

than one maximum or minimum value – in the case of a polynomial - then x would 

have more than one solution.  

 

In the case of a high school solution if we have a quadratic of the form 

cbxaxy  2  then the maximum/minimum value is  

 

02  bax
dx

dy
 such that 

a

b
x

2
  

 

 

 
Example 6:  A quadratic 42  xy  and polynomial 93  xy  are presented in the 

graph below. What are the maxima/ minima? 

 

 

 
The maximum and minimum x values are therefore calculated by taking the derivative 

of y with respect to x, setting the derivative equal to zero and solving for x.  The 

maximum and minimum y estimates are calculated by substituting the maximum and 

minimum x estimates back into the original equation. 

 

For the quadratic the minimum over the interval [-2,2] is  
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and for the polynomial over the interval [-3,3] 
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4. Finding the roots of a function 

 

The root(s) of a function are those values where the function intersects the x-axis. 

Certain functions have roots that are easy to calculate and these are obtained by 

setting   0xf  and solving for x .  However, in non-linear and this is not a trivial 

task.  A useful methods is that proposed by Newton and Raphson and is known as the 

“Newton-Raphson’s methods of Roots” or NRMR. 

 

NRMR is exact for linear problems and approximate for non-linear problems and 

based on the assumption that the solution to a function  xf  can be estimated by a 

Taylor’s series expansion around a reasonable estimate x close to the solution, say 0x .  

A Taylor’s series expansion is of the form 

   
 

  ...
!2

)()( 0

2

01
00101 


 xf

xx
xfxxxfxf . . In the NRMR only the linear 

terms are considered such that the solution 1x  can be found from an estimate 0x .  

Iterating with the new solution will solve the problem quickly. 

 

A Taylor expansion around the initial estimate, 0x , will yield the approximate 

solution 0x  such that   )()()( 00101 xfxxxfxf  . As we wish to solve for the 

function 0)( 1 xf  then 
)(

)(

0

0

01
xf

xf
xx


  and is the general form of  01 xx  

where   is some correction factor. On well-behaved function this method converges 

to the solution quadratically, and with linear functions only one iteration will be 

necessary. 

 

NRMR can be depicted graphically for a function that has a first derivative that is 

itself a linear function. If we evaluate the derivative at our first estimate, 0x , then we 

can calculate the slope of the straight line that will intersect the objective function as a 

tangent.  The slope, or the derivative, is calculated as  
 

10

0 0

xx

xf
xf




 . We can 

solve for 1x such that 
 
 xf

xf
xx


 0

01 , the solution from the Taylor series derivation. 

This derivation can be graphically illustrated in Figure 1.  
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Figure 1: The Newton-Raphson method of roots.  The initial guess, 0x , is used to 

calculate a (temporary) solution, 1x , through the calculation of the slope of linear 

derivative.  
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Example 7:  What are the roots of Example 6 by a) factorizing and b) using Newton-

Raphson’s method? 

 

For the quadratic the roots are )2)(2(42  xxxy  such that x = 2 or x = -2, and 

)3)(3(93  xxxxxy  x = 3 or x = 0 or x = -3 for the polynomial. 

We note that for the quadratic the minimum is found at (0,-4) therefore the roots will 

on either side of the minima because the quadratic is symmetric.  The minimum root 

is found by setting an initial guess of 3x . 

 

The functions are   42  xxf and xxf 2)(  . Therefore 5)3( f  and 

6)3( f , so our first estimate is
6
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5
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After two more iterations a root of –2 is found.  Similarly the rightmost root is found 

at 2.  Intuition: as the minima was (0,-4) the roots will be symmetric around 0. 

 

 

For the polynomial we noticed that the maxima/minima were found at  23.10,3  .  

The initial guesses are there for at 13   , 13   and the mid-point at 0. The 

solutions are as follows. 

 

xi f(xi) f'(xi) xi+1 i 

-2.732 4.196 13.392 -3.045 0.313 

-3.045 -0.835 18.823 -3.000 -0.044 

-3.000 -0.018 18.018 -3.000 -0.001 

-3.000 -8.9E-06 18.000 -3.000 -4.94E-07 

 

xi f(xi) f'(xi) xi+1 i 

2.732 -4.196 13.392 3.045 -0.313 

3.045 0.835 18.823 3.000 0.044 

3.000 0.018 18.018 3.000 0.001 

3.000 8.9E-06 18.000 3.000 4.9E-07 

 

xi f(xi) f'(xi) xi+1 i 

1 -8 -6.000 0.333 -1.333 

-1.333 2.963 -8.667 0.008 -0.342 

0.008 -0.077 -8.999 0.000 0.008 

 

The roots are therefore found at  x = 3 and 0. 

 


