Lectures 2 & 3 - Population ecology mathematics refresher

To ease the move into developing population models, the following mathematics cribsheet is supplied. If in doubt – read a mathematics textbook!

1. Exponents and logarithms

$$a^{0} = 1$$

$$a^{1} = a$$

$$a^{n} = a.a.a.a.(n \text{ times})$$

$$a^{-n} = \frac{1}{n}$$

$$a^{p/n} = \sqrt[n]{ap} = \left(\sqrt[n]{a}\right)^{p}$$

$$a^{p}.a^{q} = a^{p+q}$$

$$a^{pq} = \left(a^{p}\right)^{q}$$

$$\frac{a^{p}}{a^{q}} = a^{p-q}$$

$$(ab)^{x} = a^{x}b^{x}$$

$$\prod_{n} e^{x_{i}} = e^{\sum_{n}^{x_{i}}}$$

$$\ln 1 = 0$$

$$\ln e = 1$$

$$\ln b + \ln c = \ln(bc)$$

$$\ln b - \ln c = \ln(\frac{b}{c})$$

$$\ln b^{n} = n \ln b$$

$$e^{\ln b} = b$$

$$a^{b} = e^{b \ln a}$$

2. Calculus

Differentiation

To calculate the rate-of-change of a function with respect to variable we use differentiation. This amounts to calculating the slope of the tangent to the function. Alternatively we can estimate the maximum value of a function with respect to a variable of interest.

In its most simplest form

$$y = ax^{b}$$
 $\frac{dy}{dx} = b \cdot a \cdot x^{b-1}$

Example 1: Differentiate the function $y = 2x^4-3x-3$.

$$\frac{dy}{dx} = 4 \cdot 2x^{4-1} - 1 \cdot 3x^{1-1} - 0 = 8x^3 - 3$$

When differentiating logarithms and exponents the following rules apply

$$y = \ln x^{b} \qquad \frac{dy}{dx} = \frac{1}{x} \cdot b$$
$$y = e^{-x} \qquad \frac{dy}{dx} = -e^{-x}$$
(Note that $y = \ln x^{b} = b \ln x$)

Chain rule

This is possibly the most important rule in differential calculus. Use the chain rule when you have to differentiate a function $\frac{dy}{dx} = f(g(x))$ that is itself a function of the variable that is being differentiated. Example functions are $e, \sqrt{}$ and \ln . $\frac{df(g(x))}{dx} = \frac{d}{dx}(g(x))\frac{d}{dx}g(x)$. The rule can also be expressed as $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$ given that there has been a transformation of the function u = g(x). **Example 2:** Differentiate the following two functions using the Chain Rule. $y = \sqrt{x^2 + 1}$ and $y = \ln(2x^3 + 4x)$

The solutions to the following equations are as follows:

let
$$u = x^2 + 1$$

 $\frac{du}{dx} = 2x$
 $\frac{du}{dx} = 6x^2 + 4$

Therefore as
$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

 $\frac{dy}{dx} = \frac{1}{2}u^{-1/2} \cdot 2x$ $\frac{dy}{dx} = \frac{1}{u} \cdot (6x^2 + 4)$

Now back-transform such that

$$\frac{dy}{dx} = \frac{x}{\sqrt{x^2 + 1}} \qquad \qquad \frac{dy}{dx} = \frac{6x^2 + 4}{2x^3 + 4x} = \frac{2(3x^2 + 2)}{2(x^3 + 2x)} = \frac{3x^2 + 2}{x^3 + 2x}$$

Product and quotient rules

Often the function to be differentiated has $\frac{d}{dx} \{f(x)g(x)\} = f(x)g'(x) + g(x)fg(x)$ $\frac{d}{dx} \left\{\frac{f(x)}{g(x)}\right\} = \frac{g(x)f'(x) - f(x)g'(x)}{[g(x)]^2}$

Example 3: Calculate $\frac{d}{dx} \{axe^{-bx}\}$ using the product rule.

$$\frac{d}{dx}\left\{axe^{-bx}\right\} = ax\frac{d}{dx}\left\{e^{-bx}\right\} + \frac{d}{dx}\left\{e^{-bx}\right\}\frac{d}{dx}\left\{ax\right\}$$
$$= axe^{-bx}\frac{d}{dx}\left\{-bx\right\} + e^{-bx} \times a$$
$$= -axbe^{-bx} + ae^{-bx}$$
$$= ae^{-bx}\left(1 - bx\right)$$

Example 4: Calculate $\frac{d}{dx}\left\{\frac{4x-2}{x^2+1}\right\}$ using the quotient rule.

$$\frac{d}{dx}\left\{\frac{4x-2}{x^2+1}\right\} = \frac{\left(x^2+1\right)\frac{d}{dx}\left\{4x-2\right\} - \left(4x-2\right)\frac{d}{dx}\left\{x^2+1\right\}}{\left(x^2+1\right)^2}$$
$$= \frac{\left(x^2+1\right) \times 4 - \left(4x-2\right) \times 2x}{\left(x^2+1\right)^2}$$
$$= \frac{4x^2+4-8x^2+4x}{\left(x^2+1\right)^2}$$
$$= \frac{4x^2+4-8x^2+4x}{\left(x^2+1\right)^2}$$

Examples

1. Differentiate the function $f(x) = 10x^2 + 9x - 4$

$$f'(x) = 20x^2 + 9$$

2. Differentiate the function $f(x) = (x^3 - 7)(2x^2 + 3)$

$$f'(x) = 3x^{2} \times (2x^{2} + 3) + 4x \times (x^{3} - 7)$$
$$= 6x^{4} + 9x^{2} + 4x^{4} - 28x$$
$$= 10x^{4} - 19x^{2} - 28x$$

3. Differentiate the function $f(x) = (x^3 - 7)(2x^2 + 3)$

$$f'(w) = \frac{(w^3 - 7) \times 2 - 2w \times 3w^2}{(w^3 - 7)^2}$$
$$= \frac{2w^3 + 14 - 6w^3}{(w^3 - 7)^2}$$
$$= \frac{-4w^3 + 14}{(w^3 - 7)^2}$$

4. Differentiate the function $y = (3s)^{-4}$

$$f(y) = \frac{1}{81}s^{-4}$$
$$f'(y) = -\frac{5}{81}s^{-5}$$

5. Find f'(x) if $y = x^x$

First, let
$$y = e^{x \ln x}$$

 $f'(x) = e^{x \ln x} \times \frac{d}{x} \{x \ln x\}$
 $= e^{x \ln x} \times \left(\frac{x}{x} + \ln x\right)$
 $= -x \ln x (1 + \ln x)$

6. Find
$$f'(x)$$
 if $f(x) = \ln \sqrt[3]{(2x+5)^2}$
Let $z = (2x+5)^2$
 $\frac{dy}{dx} = \frac{dy}{dz}\frac{dz}{dx}$
 $f(x) = \ln [(2x+5)^2]^{\frac{1}{3}} = \frac{1}{3}\ln(2x+5)^2 = \frac{2}{3}\ln(2x+5)$
 $f'(x) = \frac{dy}{dz}\frac{dz}{dy} = \frac{2}{3} \times \frac{1}{2x+5} \times 2$
 $= \frac{4}{6x+15}$

7. Find
$$f'(x)$$
 if $f(x) = \ln \left[\sqrt{6x - 1} (4x + 5)^3 \right]$ and $x > \frac{1}{6}$.

$$f(x) = \ln\left[(6x-1)^{\frac{1}{2}}(4x+5)^{3}\right]$$

= $\ln(6x-1)^{\frac{1}{2}} + \ln(4x+5)^{3}$
= $\frac{1}{2}\ln(6x-1) + 3\ln(4x+5)$
 $f'(x) = \frac{1}{2} \times \frac{1}{2} \times 6 + 3 \times \frac{1}{2} \times 4$

$$f'(x) = \frac{1}{2} \times \frac{1}{(6x-1)} \times 6 + 3 \times \frac{1}{(4x+5)} \times 4$$
$$= \frac{3}{(6x-1)} + \frac{12}{(4x+5)}$$
$$= \frac{3(4x+5)+12(6x-1)}{(6x-1)(4x-5)}$$
$$= \frac{12x+15+72x-12}{(6x-1)(4x-5)} = \frac{84x-3}{(6x-1)(4x-5)}$$

8. Find
$$\frac{dy}{dx}$$
 if $y = e^{\sqrt{x^2 + 1}}$
$$\frac{dy}{dx} = e^{\sqrt{x^2 + 1}} \times \frac{d}{dx} \left\{ \sqrt{x^2 + 1} \right\} \times \frac{d}{dx} \left\{ x^2 \right\}$$
$$= e^{\sqrt{x^2 + 1}} \times \left(\frac{1}{2} \left(x^2 + 1 \right)^{-\frac{1}{2}} \right) \times 2x$$
$$= \frac{x e^{\sqrt{x^2 + 1}}}{\sqrt{x^2 + 1}}$$

Integration

Integration is the opposite of differentiation. In calculus there is a method used to back-calculate the derivative of a function to its original form. If $f'(x) = \frac{f(x)}{dx}$ then the antiderivative of f'(x) is f(x).

In its simplest form

 $\int x^n dx = \frac{x^{n+1}}{n+1} + C$. It is crucial to always have the dx and the integration constant C in your expression and solution.

We can check our solution by taking the derivative

$$\frac{d}{dx}\left\{\frac{x^{n+1}}{n+1}+C\right\} = \frac{n+1}{n+1}x^{(n+1)-1} + 0 = x^n.$$

Integration, as with differentiation, has the following rules:

If we wish to integrate between two values say between some lower, L, and upper, U, bounds then the "Fundamental Theorem of the Calculus" applies. It is defined as

$$\int_{L}^{U} f'(x) dx = f(x)]_{L}^{U} = f(U) - f(L)$$

The Fundamental Theorem of the Calculus is also used to estimate the area under a curve or a volume if at least two-dimensions are integrated.

Example 5: Calculate $\int 2x dx$ between the bounds 1 and 3.

$$\int_{1}^{3} x^{2} dx = \left(\frac{x^{3}}{3}\right) \Big]_{1}^{3} = \left(\frac{3^{3}}{3}\right) - \left(\frac{1^{3}}{3}\right) = 9 - \frac{1}{3} = \frac{27 - 1}{3} = \frac{26}{3}$$

Examples

9.
$$\int a^{x} dx = \left(\frac{1}{\ln a}\right) a^{x} + C$$

10.
$$\int 4x^{5} dx = \frac{4}{6}x^{6} + C$$

11.
$$\int \sqrt[3]{x^{2}} dx = \int x^{\frac{2}{3}} dx = \frac{x^{\frac{2}{3}+1}}{\left(\frac{2}{3}+1\right)} + C = \left(\frac{3}{5}\right) x^{\frac{5}{3}} + C$$

12.
$$\int \frac{1}{x^{2}} dx = \int x^{-2} dx = -x^{-1} + C = -\frac{1}{x} + C$$

13. Integrate
$$\int_{-2}^{3} (6x^{2} - 5) dx$$
$$= \left[2x^{3} - 5x \right]_{-2}^{3}$$
$$= (2 \times 3^{3} - 5 \times 3) - (2 \times -2^{3} - 5 \times -2)$$
$$= 54 - 15 + 16 - 10$$
$$= 45$$

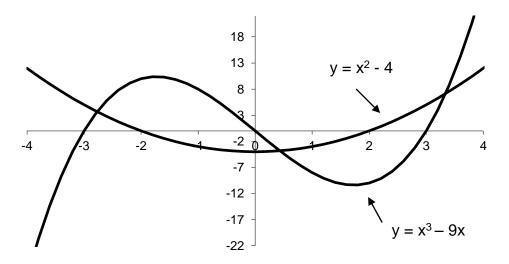
3. Finding the maxima/minima of a function

The maximum or minimum of a function can be found suing differentiation. For example, if we have a continuous function f(y) the maxima/minima, within range of x values *aka* the domain, are estimated easily by differentiating f(y) with respect to x, setting the equation to zero and then solving for x. These x values are then replaced into the original equations and solved for the corresponding y values. If there is more than one maximum or minimum value – in the case of a polynomial - then x would have more than one solution.

In the case of a high school solution if we have a quadratic of the form $y = ax^2 + bx + c$ then the maximum/minimum value is

$$\frac{dy}{dx} = 2ax + b = 0$$
 such that $x = -\frac{b}{2a}$

Example 6: A quadratic $y = x^2 - 4$ and polynomial $y = x^3 - 9$ are presented in the graph below. What are the maxima/ minima?



The maximum and minimum x values are therefore calculated by taking the derivative of y with respect to x, setting the derivative equal to zero and solving for x. The maximum and minimum y estimates are calculated by substituting the maximum and minimum x estimates back into the original equation.

For the quadratic the minimum over the interval [-2,2] is

$$\frac{dy}{dx} = 2x = 0$$

x = 0 and y = -4
and for the polynomial over the interval [-3,3]

$$\frac{dy}{dx} = 3x^2 - 9 = x^2 - 3 = 0$$

x = $\pm\sqrt{3}$ and y ~ ±10.39

4. Finding the roots of a function

The root(s) of a function are those values where the function intersects the x-axis. Certain functions have roots that are easy to calculate and these are obtained by setting f(x)=0 and solving for x. However, in non-linear and this is not a trivial task. A useful methods is that proposed by Newton and Raphson and is known as the "Newton-Raphson's methods of Roots" or NRMR.

NRMR is exact for linear problems and approximate for non-linear problems and based on the assumption that the solution to a function f(x) can be estimated by a Taylor's series expansion around a reasonable estimate x close to the solution, say x_0 . A Taylor's series expansion is of the form

$$f(x_1) = f(x_0) + (x_1 - x_0)f'(x_0) + \frac{(x_1 - x_0)^2}{2!}f''(x_0) + \dots$$
 In the NRMR only the linear

terms are considered such that the solution x_1 can be found from an estimate x_0 . Iterating with the new solution will solve the problem quickly.

A Taylor expansion around the initial estimate, x_0 , will yield the approximate solution x_0 such that $f(x_1) \cong f(x_0) + (x_1 - x_0)f'(x_0)$. As we wish to solve for the function $f(x_1) = 0$ then $x_1 \cong x_0 - \frac{f(x_0)}{f'(x_0)}$ and is the general form of $x_1 \cong x_0 - \varepsilon$ where ε is some correction factor. On well-behaved function this method converges to the solution quadratically, and with linear functions only one iteration will be necessary.

NRMR can be depicted graphically for a function that has a first derivative that is itself a linear function. If we evaluate the derivative at our first estimate, x_0 , then we can calculate the slope of the straight line that will intersect the objective function as a tangent. The slope, or the derivative, is calculated as $f'(x) = \frac{f(x_0) - 0}{x_0 - x_1}$. We can solve for x_1 such that $x_1 = x_0 - \frac{f(x_0)}{f'(x)}$, the solution from the Taylor series derivation.

This derivation can be graphically illustrated in Figure 1.

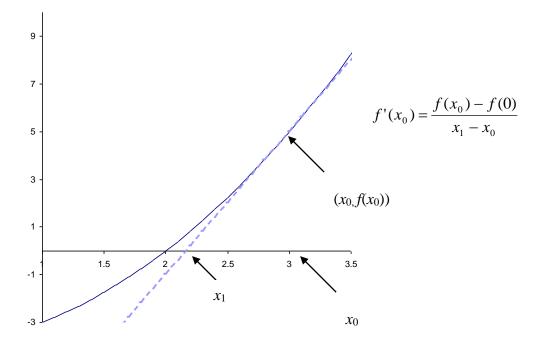


Figure 1: The Newton-Raphson method of roots. The initial guess, x_0 , is used to calculate a (temporary) solution, x_1 , through the calculation of the slope of linear derivative.

Example 7: What are the roots of Example 6 by a) factorizing and b) using Newton-Raphson's method?

For the quadratic the roots are $y = x^2 - 4 = (x-2)(x+2)$ such that x = 2 or x = -2, and $y = x^3 - 9x = x(x-3)(x+3)$ x = 3 or x = 0 or x = -3 for the polynomial. We note that for the quadratic the minimum is found at (0,-4) therefore the roots will on either side of the minima because the quadratic is symmetric. The minimum root is found by setting an initial guess of x = 3.

The functions are $f(x) = x^2 - 4$ and f'(x) = 2x. Therefore f(-3) = 5 and f'(-3) = -6, so our first estimate is $x_1 \cong -3 - \frac{5}{-6} = \frac{-18+5}{6} = -\frac{13}{6}$. This is then

resubstituted in such that

$$x_2 \cong -\frac{13}{6} - \frac{\left(\frac{169}{36} - 4\right)}{\left(-\frac{26}{12}\right)} = -\frac{13}{6} + \frac{12}{26} \left(\frac{169 - 144}{36}\right) = -\frac{13}{6} + \frac{12}{26} \left(\frac{25}{36}\right) = -2.006$$

After two more iterations a root of -2 is found. Similarly the rightmost root is found at 2. Intuition: as the minima was (0,-4) the roots will be symmetric around 0.

For the polynomial we noticed that the maxima/minima were found at $(\pm \sqrt{3},\pm 10.23)$. The initial guesses are there for at $-\sqrt{3}-1$, $\sqrt{3}+1$ and the mid-point at 0. The solutions are as follows.

Xi	$f(x_i)$	$f'(x_i)$	x_{i+1}	εi
-2.732	4.196	13.392	-3.045	0.313
-3.045	-0.835	18.823	-3.000	-0.044
-3.000	-0.018	18.018	-3.000	-0.001
-3.000	-8.9E-06	18.000	-3.000	-4.94E-07
Xi	$f(x_i)$	$f'(x_i)$	x_{i+1}	Eİ
2.732	-4.196	13.392	3.045	-0.313
3.045	0.835	18.823	3.000	0.044
3.000	0.018	18.018	3.000	0.001
3.000	8.9E-06	18.000	3.000	4.9E-07
Xi	$f(x_i)$	$f'(x_i)$	x_{i+1}	εi
1	-8	-6.000	0.333	-1.333
-1.333	2.963	-8.667	0.008	-0.342
0.008	-0.077	-8.999	0.000	0.008

The roots are therefore found at $x = \pm 3$ and 0.