Lectures 2 & 3 - Population ecology mathematics refresher

To ease the move into developing population models, the following mathematics
cribsheet is supplied. If in doubt — read a mathematics textbook!

1. Exponents and logarithms

a’=1
a'=a
a" = a.a.a.a.(n times)
a1
n
aP'" =nfap = (Q/a)p
af.ad =gP+
a™M — (ap)q
2_: —aPf
(ab)' =ab*

Hexi — ezn:x
n

In1=0
Ine=1
Inb +Inc =In(bc)

Inb—lnc:ln(g)
C

Inb" =ninb

eInb =b

ab :eblna



2. Calculus
Differentiation

To calculate the rate-of-change of a function with respect to variable we use
differentiation. This amounts to calculating the slope of the tangent to the function.
Alternatively we can estimate the maximum value of a function with respect to a
variable of interest.

In its most simplest form

y =ax" %:b-a-xbl
X

Example 1: Differentiate the function y = 2x*-3x-3.

Y 4oxtt 1.3 _0=8x° -3
dx

When differentiating logarithms and exponents the following rules apply

y=Inx" OI—yzi-b
dx x
« Gy x
y dx

(Note that y=Inx" =bln x)

Chain rule

This is possibly the most important rule in differential calculus. Use the chain rule

when you have to differentiate a function % = f(g(x)) that is itself a function of the
X

variable that is being differentiated. Example functions are e,/ and In.

df (g(x)) d d dy dy du .

—= 7 = (g(x))—a(x). The rule can also be expressed as — =—2-—given
dx dx(g( ))dx g( ) P dx du dxg

that there has been a transformation of the function u = g(x).



Example 2: Differentiate the following two functions using the Chain Rule.
y=x"+1 and y =In(2x® + 4x)

The solutions to the following equations are as follows:

letu=x%+1 u=2x%+4x

du_ 2X du_ 6x° +4

dx dx
Therefore as ﬂ = ﬂ . d_u

dx du dx

a1y ﬂzl-(6x2+4)

dx 2 dx u
Now back-transform such that

dy  x dy  6x°+4  2(3x*+2) 3x°+2
dx  Jx2+1 dx  2x°+4x  2(x*+2x) x*+2x

Product and quotient rules

Often the function to be differentiated has

%{f(x)g(x)}z f(x)g'(x)+ g(x)fg(x)

d {f(X)} _ 9()F' ()= F(x)g'(x)

Example 3: Calculate di{axe‘bx} using the product rule.
X

i{axe‘bx}z axi{e‘bx }+ i{e‘bx}

d
dx dx dx dx {ax}

dx
= axe ™ %{— bx}+e™ xa

= —axbe ™ +ae™

= ae ™™ (1-bx)




Example 4: Calculate 1{4)2(—_2} using the quotient rule.
dx | x°+1

4 (ax2 (xz+1);({4x—2}—(4x—2)i({x2+1}
&{Xz +1}= (x2 +1)2
(X2 +1)x 4 (4x—2)x 2x
- (x2+1)2
_4x® +4-8x% +4x
B (x2+1)2
—4X% +4x+4
(x2+1)2

Examples

1. Differentiate the function f(x)=10x>+9x—4

f'(x)=20x*+9

2. Differentiate the function f(x)= (x3 - 7X2x2 +3)
£(x) = 3% x (2x% + 3)+ 4xx (x* - 7)

=6Xx* +9x® + 4x* — 28x
=10x* —19x* — 28x

3. Differentiate the function f(x)=(x* —7)2x* +3)



, (W3—7)><2—2W><3w2
f'(w)=
(w) (W3 - 7)2
_ 2wW° +14 - 6wW°
(w* ~7f

_—4w’+14

w7

. Differentiate the function y = (3s)™

1
fly)=—s*
(y) o1
' __E -5
(y)= o1

. Find f'(x) if y=x"

xInx

First, let y=e

f'(x)=ex"™ x%{xln X}

X
= gXInx x(—+ln X
X

=—xInx(1+Inx)



. Find f'(x)if f(x)=In3/(2x+5)
Let z=(2x+5)

dy _dydz
dx dz dx

f(x)=In[(2x+5P} ~Iin(ax+5Y = Zin(ax+5)

f=-2d_2, 1
dzdy 3 2x+5

4

6x+15

x 2

. Find f/(x)if f(x)=In|v6x—1(ax-+5) |and x>%.

f(x)= In{(6x —1)%(4x + 5)3}

_ In(6x—1): + In(4x + 5

:%In(6x—1)+3ln(4x+5)

3 12

(6x-1) " (4x+5)

_ 3(4x+5)+12(6x-1)

~ (6x-1)4x-5)
_12x+15+72x-12  84x-3
~ (6x-1)4x-5)  (6x-1)4x-5)




8. Find i y = el
dx

ﬂ:emxi X2+1}>< d {XZ}
dx dx X

pSEE [%(XZ +1);Jx 2X

X% +1

Xe

X% +

[EEN

Integration

Integration is the opposite of differentiation. In calculus there is a method used to
back-calculate the derivative of a function to its original form. If f'(x)= f()%x then
the antiderivative of f'(x)is f(x).

In its simplest form

Ix”dx=

n+1

X

n+1
in your expression and solution.

+ C . Itis crucial to always have the dx and the integration constant C

We can check our solution by taking the derivative

LIRS LS NS
dx |n+1 n+1

Integration, as with differentiation, has the following rules:

If we wish to integrate between two values say between some lower, L, and upper, U,
bounds then the “Fundamental Theorem of the Calculus™ applies. It is defined as

[ 700 =T = 10)- £(0)

L

The Fundamental Theorem of the Calculus is also used to estimate the area under a
curve or a volume if at least two-dimensions are integrated.



Example 5: Calculate .|.2xdx between the bounds 1 and 3.

P % T3 (), 1_27-1_26
) 3)|, (3) (3 3 3 3

Examples

0. jaxdx:(i}awc
Ina
5 4 6
10. j4x dx=—x°+C
6

2+ZI.

2 3 5
11. ﬁ/FdX=J'x3dx=(2X—+C:(gjx3 +C
—+1
>

12. I%dx=jx‘2dx=—x‘1+c :—§+C

13. Integrate .3[(6x2 —5)dx
2

i2(6x2 -~ 5)dx
= [2x3 - 5x]_32

— (2x3*~5x3)—(2x-2*~5x-2)
—54-15+16-10
—45



3. Finding the maxima/minima of a function

The maximum or minimum of a function can be found suing differentiation. For
example, if we have a continuous function f(y) the maxima/minima, within range of x
values aka the domain, are estimated easily by differentiating f(y) with respect to x,
setting the equation to zero and then solving for x. These x values are then replaced
into the original equations and solved for the corresponding y values. If there is more
than one maximum or minimum value — in the case of a polynomial - then x would
have more than one solution.

In the case of a high school solution if we have a quadratic of the form
y =ax® +bx +c then the maximum/minimum value is

%=2ax+b:0 such that x:—£

X 2a

Example 6: A quadratic y=x* —4 and polynomial y = x> —9 are presented in the
graph below. What are the maxima/ minima?

18 -
13 - y:X2-4
8 \
4 3 2 20 2 3 4
_77
-12,
17 | \ 5
y = x°—9x
_22,

The maximum and minimum x values are therefore calculated by taking the derivative
of y with respect to x, setting the derivative equal to zero and solving for x. The
maximum and minimum y estimates are calculated by substituting the maximum and
minimum X estimates back into the original equation.

For the quadratic the minimum over the interval [-2,2] is

Q:ZX:O
dx

x=0 and y=-4
and for the polynomial over the interval [-3,3]



W 352 _9-x*-3=0
dx

x=13 and y~+10.39

4. Finding the roots of a function

The root(s) of a function are those values where the function intersects the x-axis.
Certain functions have roots that are easy to calculate and these are obtained by
setting f(x)=0 and solving for x. However, in non-linear and this is not a trivial

task. A useful methods is that proposed by Newton and Raphson and is known as the
“Newton-Raphson’s methods of Roots” or NRMR.

NRMR is exact for linear problems and approximate for non-linear problems and
based on the assumption that the solution to a function f(x) can be estimated by a

Taylor’s series expansion around a reasonable estimate X close to the solution, say x; .
A Taylor’s series expansion is of the form

2
f(x)= f(x0)+(x1—x0)f’(xo)+w f"(X,)+.... . In the NRMR only the linear

terms are considered such that the solution x, can be found from an estimate X, .
Iterating with the new solution will solve the problem quickly.

A Taylor expansion around the initial estimate, x,, will yield the approximate

solution x, such that f(x,)= f(x,)+ (X, — X, )f'(X,). As we wish to solve for the
f (%)
F/(%,)
where ¢ is some correction factor. On well-behaved function this method converges

to the solution quadratically, and with linear functions only one iteration will be
necessary.

function f(x;) =0 then x, =X, — and is the general form of x, =x, — ¢

NRMR can be depicted graphically for a function that has a first derivative that is
itself a linear function. If we evaluate the derivative at our first estimate, x,, then we

can calculate the slope of the straight line that will intersect the objective function as a

M.We can

0 1

tangent. The slope, or the derivative, is calculated as f'(x)=

(x)
£(x)

This derivation can be graphically illustrated in Figure 1.

solve for x,such that x, = x, — , the solution from the Taylor series derivation.

10
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Figure 1: The Newton-Raphson method of roots. The initial guess, X, , is used to

calculate a (temporary) solution, x,, through the calculation of the slope of linear
derivative.
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Example 7: What are the roots of Example 6 by a) factorizing and b) using Newton-
Raphson’s method?

For the quadratic the roots are y = x> —4=(x—2)(x+2) such that x =2 or x = -2, and
y=x>—9x = x(x—3)(x+3) x=3orx =0 or x = -3 for the polynomial.
We note that for the quadratic the minimum is found at (0,-4) therefore the roots will

on either side of the minima because the quadratic is symmetric. The minimum root
is found by setting an initial guess of x=3.

The functions are f(x)=x?—4and f'(x) =2x. Therefore f(-3)=5 and

f'(—=3) =—6, so our first estimate is x, = —3—% = _1i+ > :—%. This is then

resubstituted in such that
D
, _E_L=_E+E 169144 =_E+E 2 =-2.006
6 [_26) 6 26 36 6 26\36
12

After two more iterations a root of -2 is found. Similarly the rightmost root is found
at 2. Intuition: as the minima was (0,-4) the roots will be symmetric around 0.

For the polynomial we noticed that the maxima/minima were found at (i \/5,110.23).

The initial guesses are there for at —+/3—1, +/3+1 and the mid-point at 0. The
solutions are as follows.

Xi f(xi) f'(xi) Xi+1 &
-2.7132 4.196 13.392 -3.045 0.313
-3.045 -0.835 18.823 -3.000 -0.044
-3.000 -0.018 18.018 -3.000 -0.001
-3.000 -8.9E-06 18.000 -3.000 -4.94E-07
Xi f(xi) f'(xi) Xi+1 &

2.732 -4.196 13.392 3.045 -0.313
3.045 0.835 18.823 3.000 0.044
3.000 0.018 18.018 3.000 0.001
3.000 8.9E-06 18.000 3.000 4.9E-07
Xi f(xi) f'(xi) Xi+1 &

1 -8 -6.000 0.333 -1.333
-1.333 2.963 -8.667 0.008 -0.342
0.008 -0.077 -8.999 0.000 0.008

The roots are therefore found at x = +3and 0.
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