

Approximation methods in general relativity for gravitational-wave astrophysics

P. Ajith International Center for Theoretical Sciences, Bangalore, India

Exercise 1

24th Chris Engelbrecht Summer School

Rhodes University, Grahamstown, South Africa. 15 to 24 January 2013

Gravitational waves in linearized GR

 In transverse-traceless gauge, the metric perturbation can be related to the quadrupole-moment of the source.

$$\omega = \sqrt{\frac{Gm}{R^3}}$$

$$h \sim \frac{2}{d} \ddot{Q}_{jk} \sim \left(\frac{G}{c^4}\right) \frac{4\mu}{d} \left(\frac{Gm}{R}\right) \cos 2 \omega t$$

$$10^{-45!}$$

 $M = m_1 + m_2$

Exercise: Compute GW amplitudes and frequencies

- A "GW generator" Two masses with 10^3 kg separated by 10m orbiting each other at a frequency of 10 Hz ($m_1 = m_2 = 10^3$ kg, $d = 10^4$ km).
- Planets A Jupiter-sized planet orbiting a Sun-like star in our own galaxy $(m_1 = 10^{-3}M_{\odot}, m_2 = 1M_{\odot}, P_{\text{orb}} = 12 \text{ yrs}, d = 1 \text{ kpc}).$
- Binary stars A main-sequence star binary in our own galaxy ($m_1 = m_2 = M_{\odot}$, $P_{orb} = 1000$ yrs, d = 1 kpc).
- White-dwarf binaries A white-dwarf binary in our own galaxy ($m_1 = m_2 = 0.5 M_{\odot}$, $P_{orb} = 30 mins$, d = 1 kpc).
- **Binary pulsars** The Hulse Taylor binary pulsar ($m_1 = m_2 = 1.4 M_{\odot}$, $P_{orb} = 7.8$ hrs, d = 6.4 kpc).
- Compact binary coalescence Binary black-hole (BH) coalescence in Virgo cluster. ($m_1 = m_2 = 10 M_{\odot}$, $P_{\text{orb}} = 0.1 \text{ sec}$, d = 16.5 Mpc)
- Supermassive BH binaries Merger of two galaxies each hosting a supermassive BH ($m_1 = m_2$ = $10^6 M_{\odot}$, $P_{orb} = 1$ yr, d = 1 Gpc)

Exercise: Plot the amplitude and frequency of GWs from different sources

log amplitude

log frequency