RHODES UNIVERSITY DEPARTMENT of MATHEMATICS (Pure & Applied) CLASS TEST No. 2 : OCTOBER 2009 MATHEMATICS HONOURS

GEOMETRIC CONTROL

AVAILABLE MARKS : 50 FULL MARKS : 50 DURATION : 1 HOUR

NB : All questions may be attempted.

Question 1. (24 marks)

Let $\Sigma = (\mathsf{G}, \Gamma)$ be a (right-invariant) control system with the understanding that the state space G is a matrix Lie group and that the class \mathcal{U} of admissible controls consists of piecewise-constant controls.

- (a) Define the terms trajectory, attainable set (from $g \in G$) and orbit (through $g \in G$).
- (b) Explain what is meant by saying that a point (state) $y \in G$ is normally attainable from $x \in G$.
- (c) State (but DO NOT prove) Krener's Theorem. Hence, prove that

 $\operatorname{Lie}(\Gamma) = \mathfrak{g} \iff \operatorname{int} \mathcal{A}(1) \neq \emptyset.$

(Here, \mathfrak{g} denotes the Lie algebra of G and $\mathcal{A}(1)$ denotes the attainable set from the identity $1 \in \mathsf{G}$.)

[9,3,12]

Question 2. (26 marks)

Let $\Sigma = (\mathsf{G}, \Gamma)$ be a (right-invariant) control system with the understanding that the state space G is a matrix Lie group and that the class \mathcal{U} of admissible controls consists of piecewise-constant controls.

- (a) Explain what is meant by saying that Σ is *controllable*. Give necessary conditions for controllability.
- (b) State the following controllability tests
 - i. Group Test.
 - ii. Local Controllability Test.
 - iii. Closure Test.

Give *detailed* proofs for any two of these tests.

[4, 22]