RHODES UNIVERSITY DEPARTMENT of MATHEMATICS (Pure & Applied) <u>CLASS TEST No. 2</u> : OCTOBER 2011 MATHEMATICS HONOURS

GEOMETRIC CONTROL THEORY

AVAILABLE MARKS : 52 FULL MARKS : 50 DURATION : 1 HOUR

NB : All questions may be attempted.

Question 1. (24 marks)

Let Z be a (real, finite-dimensional) vector space.

- (a) Explain what is meant by saying that a map $\Omega : \mathsf{Z} \times \mathsf{Z} \to \mathbb{R}$ is a *symplectic form* on Z . Hence show that if Ω is a symplectic form on Z , then Z must be even-dimensional.
- (b) Show that $Z = W \times W^*$ admits a *canonical symplectic form*. (Here, W^{*} denotes the dual of the vector space W.)
- (c) Verify that the formula for the symplectic form on \mathbb{R}^{2n} as a matrix, namely

$$\mathbb{J} = egin{bmatrix} \mathbf{0} & \mathbf{1} \ -\mathbf{1} & \mathbf{0} \end{bmatrix} \in \mathbb{R}^{(2n) imes (2n)}$$

coincides with the definition of the symplectic form as the canonical form on \mathbb{R}^{2n} regarded as the product $\mathbb{R}^n \times (\mathbb{R}^n)^*$.

[12, 6, 6]

Question 2. (28 marks)

Let (Z, Ω) be a (real, finite-dimensional) symplectic vector space.

- (a) Explain what is meant by saying that a vector field $X : \mathsf{Z} \to \mathsf{Z}$ is *Hamiltonian*. Hence show that the Hamiltonian vector field X_H exists for any given (smooth) function $H : \mathsf{Z} \to \mathbb{R}$.
- (b) Prove that a *linear* vector field $A : \mathbb{Z} \to \mathbb{Z}$ is Hamiltonian <u>if and only if</u> A is Ω -skew (i.e., $\Omega(Az_1, z_2) + \Omega(z_1, Az_2) = 0$ for all $z_1, z_2 \in \mathbb{Z}$).
- (c) What about a general (smooth) vector field $X : \mathsf{Z} \to \mathsf{Z}$? Make a clear statement and then prove it.

[4, 14, 10]