RHODES UNIVERSITY DEPARTMENT OF MATHEMATICS (Pure & Applied)

EXAMINATION: NOVEMBER 2009 MATHEMATICS HONOURS

Examiners : Dr C.C. Remsing AVAILABLE MARKS : 110

Dr F.A.M. Frescura FULL MARKS : 100
DURATION : 3 HOURS

GEOMETRIC CONTROL

NB : All questions may be attempted. All steps must be clearly motivated. Marks will not be awarded if this is not done.

Question 1. [20 marks]

Let Z be a finite-dimensional real vector space and let ω be a skew-symmetric bilinear form on Z.

(a) Explain what is meant by saying that ω is nondegenerate. Also, define the associated linear map

$$\omega^{\flat}:Z\to Z^*$$

 $(Z^*$ denotes the dual vector space).

- (b) Prove that the following statements are equivalent:
 - i. ω is nondegenerate;
 - ii. the matrix $Q = [\omega(e_i, e_j)]$ of ω (with respect to a basis $(e_i)_{1 \le i \le m}$ of Z) is nonsingular;
 - iii. the linear map ω^{\flat} is an isomorphism.
- (c) Define the term symplectic vector space. Hence, show that (the real vector space) $Z=W\times W^*$ admits a canonical symplectic structure.

[2,12,6]

Question 2. [22 marks]

Let (Z, ω) be a symplectic vector space.

(a) Explain what is meant by saying that a vector field $X: Z \to Z$ is Hamiltonian. Hence, prove that a linear vector field $A: Z \to Z$ is Hamiltonian if and only if A is ω -skew (i.e.

$$\omega(Az_1, z_2) + \omega(z_1, Az_2) = 0$$

for all $z_1, z_2 \in Z$).

(b) Define the Poisson bracket $\{F,G\}$ of two functions $F,G \in C^{\infty}(Z)$. Hence, show that if $A,B:Z \to Z$ are linear Hamiltonian vector fields with corresponding energy functions

$$H_A(z) = \frac{1}{2}\omega(Az, z)$$
 and $H_B(z) = \frac{1}{2}\omega(Bz, z),$

then we have

$$\{H_A, H_B\} = H_{[A,B]}$$

([A, B] denotes the Lie bracket (commutator) $A \circ B - B \circ A$).

[12,10]

Question 3. [22 marks]

Let $\Sigma = (\mathsf{G}, \Gamma)$ be a *left-invariant* control system with the understanding that the state space G is a matrix Lie group and that the class \mathcal{U} of admissible controls consists of *piecewise-constant* controls.

- (a) Define the terms trajectory and attainable set (from $g \in G$).
- (b) Prove that

i.
$$\mathcal{A}(g) = \{ g e^{t_1 A_1} \cdots e^{t_N A_N} \mid A_i \in \Gamma, t_i > 0, N \ge 0 \}.$$

- ii. A(g) = g A(1).
- iii. A(1) is a sub-semigroup of G.
- iv. $\mathcal{A}(g)$ is a path-connected subset of G .

[2, 20]

Question 4. [22 marks]

Let $\Sigma = (\mathsf{G}, \Gamma)$ be a *left-invariant* control system with the understanding that the state space G is a matrix Lie group and that the class \mathcal{U} of admissible controls consists of *piecewise-constant* controls. Let \mathfrak{g} be the Lie algebra of G .

(a) For $\Gamma_1, \Gamma_2 \subseteq \mathfrak{g}$, we write $\Gamma_1 \sim \Gamma_2$ if $\operatorname{cl} \mathcal{A}_{\Gamma_1}(1) = \operatorname{cl} \mathcal{A}_{\Gamma_2}(1)$. Show that

$$(\Gamma_1 \sim \Gamma \quad \text{and} \quad \Gamma_2 \sim \Gamma) \ \implies \ \Gamma_1 \cup \Gamma_2 \sim \Gamma.$$

- (b) Define the saturate $\Sigma^{\text{sat}} = (\mathsf{G}, \mathsf{Sat}(\Gamma))$ of Σ . Hence, prove that
 - i. Sat $(\Gamma) \sim \Gamma$.
 - ii. Sat $(\Gamma) = \{ A \in \mathfrak{g} \mid \exp(\mathbb{R}_+ A) \subseteq \operatorname{cl} \mathcal{A}(1) \}$

(cl $\mathcal{A}_{\Gamma}(1)$ denotes the *topological closure* of the attainable set from the identity $1 \in \mathsf{G}$, corresponding to $\Gamma \subseteq \mathfrak{g}$.)

[6,16]

Question 5. [24 marks]

Let G be a matrix Lie group with associated Lie algebra g.

- (a) Define the *cotangent bundle* T^*G , and then explain what is meant by the *left-invariant realization* of T^*G .
- (b) Explain the symplectic structure of the cotangent bundle, and then derive the left-invariant realization of the symplectic form $\omega = -d\theta$.
- (c) Let $\vec{H} = (X, Y^*)$ denote the Hamiltonian vector field corresponding to the function H on $G \times \mathfrak{g}^*$. Show that

$$X(g,p) = \frac{\partial H}{\partial p}(g,p)$$

$$Y^*(g,p) = -dL_g^* \left(\frac{\partial H}{\partial g}(g,p)\right) + \operatorname{ad}_X^*(p).$$
[6,10,8]

END OF THE EXAMINATION PAPER