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Question 1. [20 marks]

Let Z be a finite-dimensional real vector space and let ω be a skew-
symmetric bilinear form on Z.

(a) Explain what is meant by saying that ω is nondegenerate. Also,
define the associated linear map

ω ♭ : Z → Z∗

(Z∗ denotes the dual vector space).

(b) Prove that the following statements are equivalent :

i. ω is nondegenerate;

ii. the matrix Q =
[

ω(ei, ej)
]

of ω (with respect to a basis
(ei)1≤i≤m of Z) is nonsingular;

iii. the linear map ω ♭ is an isomorphism.

(c) Define the term symplectic vector space. Hence, show that (the
real vector space) Z = W × W ∗ admits a canonical symplectic

structure.

[2,12,6]
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Question 2. [22 marks]

Let (Z, ω) be a symplectic vector space.

(a) Explain what is meant by saying that a vector field X : Z → Z is

Hamiltonian. Hence, prove that a linear vector field A : Z → Z

is Hamiltonian if and only if A is ω-skew (i.e.

ω(Az1, z2) + ω(z1, Az2) = 0

for all z1, z2 ∈ Z).

(b) Define the Poisson bracket {F, G} of two functions F, G ∈ C∞(Z).
Hence, show that if A, B : Z → Z are linear Hamiltonian vector
fields with corresponding energy functions

HA(z) =
1

2
ω(Az, z) and HB(z) =

1

2
ω(Bz, z),

then we have
{HA, HB} = H[A,B]

([A, B] denotes the Lie bracket (commutator) A ◦ B − B ◦ A).

[12,10]

Question 3. [22 marks]

Let Σ = (G, Γ) be a left-invariant control system with the understand-
ing that the state space G is a matrix Lie group and that the class U of

admissible controls consists of piecewise-constant controls.

(a) Define the terms trajectory and attainable set (from g ∈ G).

(b) Prove that

i. A(g) =
{

g et1A1 · · ·etNAN |Ai ∈ Γ, ti > 0, N ≥ 0
}

.

ii. A(g) = gA(1).

iii. A(1) is a sub-semigroup of G.

iv. A(g) is a path-connected subset of G.

[2, 20]
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Question 4. [22 marks]

Let Σ = (G, Γ) be a left-invariant control system with the understanding

that the state space G is a matrix Lie group and that the class U of ad-
missible controls consists of piecewise-constant controls. Let g be the Lie

algebra of G.

(a) For Γ1, Γ2 ⊆ g, we write Γ1 ∼ Γ2 if clAΓ1
(1) = clAΓ2

(1). Show

that
(Γ1 ∼ Γ and Γ2 ∼ Γ) =⇒ Γ1 ∪ Γ2 ∼ Γ.

(b) Define the saturate Σ sat = (G, Sat (Γ)) of Σ. Hence, prove that

i. Sat (Γ) ∼ Γ.

ii. Sat (Γ) = {A ∈ g | exp (R+A) ⊆ clA(1)}

(clAΓ(1) denotes the topological closure of the attainable set from the iden-

tity 1 ∈ G, corresponding to Γ ⊆ g.)
[6,16]

Question 5. [24 marks]

Let G be a matrix Lie group with associated Lie algebra g.

(a) Define the cotangent bundle T ∗G, and then explain what is meant
by the left-invariant realization of T ∗G.

(b) Explain the symplectic structure of the cotangent bundle, and
then derive the left-invariant realization of the symplectic form

ω = −dθ.

(c) Let ~H = (X, Y ∗) denote the Hamiltonian vector field corre-
sponding to the function H on G × g

∗. Show that

X(g, p) =
∂H

∂p
(g, p)

Y ∗(g, p) = −dL∗
g

(

∂H

∂g
(g, p)

)

+ ad∗
X(p).

[6,10,8]

END OF THE EXAMINATION PAPER
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