RHODES UNIVERSITY DEPARTMENT OF MATHEMATICS (Pure & Applied)

EXAMINATION : NOVEMBER 2011 MATHEMATICS HONOURS

Examiners : Dr C.C. Remsing Prof. B. Makamba AVAILABLE MARKS : 110 FULL MARKS : 100 DURATION : 3 HOURS

GEOMETRIC CONTROL THEORY

NB : All questions may be attempted. All steps must be clearly motivated. Marks will not be awarded if this is not done.

Question 1. [18 marks]

Let (Z, Ω) be a (real, finite-dimensional) symplectic vector space, and let $C^{\infty}(\mathsf{Z})$ denote the *algebra* of smooth functions on Z .

(a) Define the Poisson bracket $\{F,G\}$ for $F,G \in C^{\infty}(\mathbb{Z})$, and then show that

$$X_{\{F,G\}} = -[X_F, X_G].$$

(b) Let X_H be a Hamiltonian vector field with flow φ_t . Show that

$$\frac{d}{dt}(F \circ \varphi_t) = \{F \circ \varphi_t, H\} = \{F, H\} \circ \varphi_t.$$

[10,8]

Page 1 of 3

Question 2. [20 marks]

- (a) Define the *semi-Euclidean group* SE(1,1), and then show that SE(1,1) is a connected matrix Lie group.
- (b) Determine the Lie algebra $\mathfrak{se}(1,1)$.
- (c) Explain the terms *nilpotent Lie algebra* and *solvable Lie algebra*. Hence prove that the Lie algebra $\mathfrak{se}(1,1)$ is solvable but not nilpotent.

[8,4,8]

Question 3. [18 marks]

State the *Campbell-Baker-Hausdorff Theorem* and then give ONLY ONE proof. (Provide as many details as you possibly can.)

[18]

Question 4. [20 marks]

Let $\Sigma = (\mathsf{G}, \Gamma)$ be a left-invariant control system. (It is assumed that the state space G is a *matrix Lie group* and that the admissible controls are *piecewise-constant maps* $u(\cdot) : [0, T] \to U \subseteq \mathbb{R}^{\ell}$.)

- (a) Explain what is meant by saying that a point $g' \in G$ is normally attainable from a point $g \in G$, and then state (but DO NOT PROVE) Krener's Theorem.
- (b) Prove that if Σ has *full rank*, then $\operatorname{int}_{\mathcal{O}}\mathcal{A} \neq \emptyset$. (Here \mathcal{O} and \mathcal{A} denote the orbit through, and the attainable set from, the identity $\mathbf{1} \in \mathsf{G}$, respectively.)
- (c) Explain what is meant by saying that Σ is *controllable*, and then state and prove the *Group Test* (for controllability).

[4,8,8]

Page 2 of 3

Question 5. [16 marks]

Let G be a connected and simply connected matrix Lie group, and let $\Sigma = (G, \Gamma)$ be a left-invariant control system (on G).

- (a) Explain what is meant by saying that G is *connected* and *simply connected*.
- (b) Assume that Γ is contained in a half-space in (the Lie algebra) \mathfrak{g} bounded by a Lie subalgebra. Prove that Σ is <u>not</u> controllable.

[2, 14]

Question 6. [18 marks]

Discuss ONLY ONE of the following problems : the *sub-Riemannian problem* (on the Heisenberg group H_3), the *elastic problem* (on the Euclidean group SE(2)) or the *plate-ball problem* (on the group $SO(3) \times \mathbb{R}^2$). (Provide as many details as you possibly can.)

[18]

END OF THE EXAMINATION PAPER