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(Geometry of complex numbers and quaternions)

• (p.14): Rotation by conjugation. If t = cos θ+ u sin θ, where u ∈
Ri+Rj+Rk is a unit vector, then conjugation by t rotates Ri+Rj+Rk
through angle 2θ about axis u.

• (p.16): Rotations form a group. The product of rotations is a ro-
tation, and the inverse of a rotation is a rotation.

(Groups)

• (p.26): S3 can be decomposed into disjoint congruent circles.

• (p.33): Simplicity of SO(3). The only nontrivial subgroup of SO (3)
closed under conjugation is SO (3) itself.

• (p.37): Reflection representation of isometries. Any isometry of
R

n that fixes O is the product of at most n reflections in hyperplanes
through O.

• (p.38): Quaternion representation of reflections. Reflection of
H = R

4 in the hyperplane through O orthogonal to the unit quaternion
u is the map that sends each q ∈ H to −uqu.

• (p.39): Quaternion representation of rotations. Any rotation of
H = R

4 about O is a map of the form q 7→ vqw, where v and w are
unit quaternions.
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• (p.43): Size of the kernel. The homomorphism ϕ : SU (2)×SU (2) →
SO (4) is 2-to-1, because its kernel has two elements.

• (p.44): SO(4) is not simple. There is a nontrivial normal subgroup
of SO (4), not equal to SO (4).

(Generalized rotation groups)

• (p.50): Rotation criterion. An n × n real matrix A represents a
rotation of R

n if and only if AA⊤ = 1 and det(A) = 1.

• (p.53): Path-connectedness of SO(n). For any n, SO (n) is path-
connected.

• (p.55): Criterion for preserving the inner product on C
n. A

linear transformation of C
n preserves the inner product

(u1, u2, . . . , un) • (v1, v2, . . . , vn) = u1v1 + u2v2 + · · ·+ unvn

if and only if its matrix A satisfies AA
⊤

= 1, where 1 is the identity
matrix.

• (p.64): Maximal tori in generalized rotation groups. The tori
listed above are maximal in the corresponding groups.

• (p.67): Centers of generalized rotation groups. The centers of
the groups SO (n), U (n), SU (n), Sp (n) are:

1. Z(SO (2m)) = {±1}.

2. Z(SO (2m+ 1)) = {1}.

3. Z(U (n)) = {ω1 : |ω| = 1}.

4. Z(SU (n)) = {ω1 : ωn = 1}.

5. Z(Sp (n)) = {±1}.

• (p.69): Centrality of discrete normal subgroups. If G is a
path-connected matrix Lie group with a discrete normal subgroup H,
then H is contained in the center Z(G) of G.
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(The exponential map)

• (p.77): Exponentiation theorem for H. When we write an ar-
bitrary element of Ri + Rj + Rk in the form θ u, where u is a unit
vector, we have eθu = cos θ+u sin θ and the exponential function maps
Ri+ Rj+ Rk onto S

3 = SU (2).

• (p.84): Submultiplicative property. For any two real n × n ma-
trices A and B, |AB| ≤ |A| |B|.

• (p.85): Convergence of the exponential series. If A is any n×n
real matrix, then 1+ A

1!
+ A2

2!
+ A3

3!
+ · · · is convergent in R

n2

.

(The tangent space)

• (p.95): Tangent vectors of O(n), U(n), Sp(n). The tangent vec-
tors X at 1 are matrices of the following forms:

(a) For O (n), n× n real matrices X such that X +X⊤ = 0.

(b) For U (n), n×n complex matrices X such that X+X
⊤

= 0.

(c) For Sp (n), n×n quaternion matrices X such that X+X
⊤

=
0.

• (p.97): Tangent space of SO(n). The tangent space of SO (n) con-
sists of precisely the n× n real vectors X such that X +X⊤ = 1.

• (p.99): Tangent space of U(n) and Sp(n). The tangent space of

U (n) consists of all the n×n complex matrices satisfying X+X
⊤

= 0.
The tangent space of Sp (n) consists of all n× n quaternion matrices

X satisfying X +X
⊤

= 0, where X denotes the quaternion conjugate
of X.

• (p.100): Determinant of exp. For any square matrix A, det
(

eA
)

=

eTr (A).

• (p.101): Tangent space of SU(n). The tangent space of SU (n)

consists of all n× n complex matrices X such that X +X
⊤

= 0 and
Tr (X) = 0.
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• (p.103): Vector space properties. T1(G) is a vector space over R;
that is, for any X, Y ∈ T1(G) we have X+Y ∈ T1(G) and rX ∈ T1(G)
for any real r.

• (p.104): Lie bracket property. T1(G) is closed under the Lie bracket,
that is, if X, Y ∈ T1(G) then [X, Y ] ∈ T1(G), where [X, Y ] = XY −
Y X.

• (p.106): Dimension of so(n), u(n), su(n), and sp(n). As vector
spaces over R,

(a) so (n) has dimension n(n− 1)/2.

(b) u (n) has dimension n2.

(c) su (n) has dimension n2 − 1.

(d) sp (n) has dimension n(2n+ 1).

(Structure of Lie algebras)

• (p.117): Tangent space of a normal subgroup. If H is a normal
subgroup of a matrix Lie group G, then T1(H) is an ideal of the Lie
algebar T1(G).

• (p.119): Simplicity of the cross-product algebra. The cross-
product algebra is simple.

• (p.120): Kernel of a Lie algebra homomorphism. If ϕ : g → g′

is a Lie algebra homomorphism, and h = {X ∈ g : ϕ(X) = 0} is its
kernel, then h is an ideal of g.

• (p.125): Simplicity of sl(n,C). For each n, sl (n,C) is a simple
Lie algebra.

• (p.126): Simplicity of su(n). For each n, su (n) is a simple Lie
algebra.

• (p.130): Simplicity of so(n). For each n > 4, so (n) is a simple
Lie algebra

• (p.134): Simplicity of sp(n). For all n, sp (n) is a simple Lie
algebra.
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(The matrix logarithm)

• (p.140): Inverse property of matrix logarithm. For any matrix
eX within distance 1 of the identity, log

(

eX
)

= X.

• (p.141): Multiplicative property of matrix logarithm. If AB =
BA, and log (A), log (B), and log (AB) are all defined, then log (AB) =
log (A) + log (B).

• (p.143): Exponentiation of tangent vectors. If A′(0) is the tan-
gent vector at 1 to a matrix Lie group G, then eA

′(0) ∈ G. That is,
exp maps the tangent space T1(G) into G.

• (p.146): Smoothness of sequential tangency. Suppose that (Am)
is a sequence in a matrix Lie group G such that Am → 1 as m → ∞,
and that (αm) is a sequence of real numbers such that (Am−1)/αm →
X as m → ∞. Then etX ∈ G for all real t (and therefore X is the
tangent at 1 to the smooth path etX).

• (p.148): The log of a neighborhood of 1. For any matrix Lie
group G there is a neighborhood Nδ(1) mapped into T1(G) by log.

• (p.149): Corollary. The log function gives a bijection, continuous
in both directions, between Nδ(1) in G and log Nδ(1) in T1(G).

• (p.150): Tangent space visibility. If G is a path-connected matrix
Lie group with discrete center and a nondiscrete normal subgroup H,
then T1(H) 6= {0}.

• (p.151): Corollary. If H is a nontrivial normal subgroup of G

under the conditions above, then T1(H) is a nontrivial ideal of T1(G).

• (p.154): Campbell-Baker-Hausdorff theorem. For each n ≥ 1,
the polynomial Fn(A,B) in

eAeB = eZ , Z = F1(A,B) + F2(A,B) + F3(A,B) + · · ·

is Lie.
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(Topology)

• (p.169): Heine-Borel theorem. If [0, 1] is contained in a union of
open intervals Ui, then the union of finitely many Ui also contains
[0, 1].

• (p.171): Continuous image of a compact set. If K is compact
and f is a continuous function defined on K, then f(K) is compact.

• (p.172): Uniform continuity. If K is a compact subset of R
m and

f : K → R
n is continuous, then f is uniformly continuous.

• (p.175): Normality of the identity component. If G0 is the iden-
tity component of a matrix Lie group G, then G0 is a normal subgroup
of G.

• (p.176): Generating a path-connected group. If G is a path-
connected matrix Lie group, and Nδ(1) is a neighborhood of 1 in G,
then any element of G is a product of members of Nδ(1).

• (p.177): Corollary. If G is a path-connected matrix Lie group, then
each element of G has the form eX1eX2 · · · eXm for some X1, X2, . . . , Xm

∈ T1(G).

• (p.179): Unique path lifting. Suppose that p is a path in S
1 with

initial point P , and P̃ is a point in R over Q. Then there is a unique
path p̃ in R such that p̃(0) = P̃ and f ◦ p̃ = p. We call p̃ the lift of
p with initial point P̃ .

(Simply connected Lie groups)

• (p.191): The induced homomorphism. For any Lie homomor-
phism Φ : G → H of matrix Lie groups G, H, with Lie algebras
g, h, respectively, there is a Lie homomorphism ϕ : g → h such that
ϕ(A′(0)) = (φ ◦ A)′ (0) for any smooth path A(t) through 1 in G.

• (p.194): Uniform continuity of paths. If p : [0, 1] → R
n is a path,

then, for any ε > 0, it is possible to devide [0, 1] into a finite number of
subintervals, each of which is mapped by p into an open ball of radius
ε.
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• (p.194): Uniform continuity of path deformations. If d : [0, 1]×
[0, 1] → R

n is a path deformation, then, for any ε > 0, it is possible
to devide the square [0, 1] × [0, 1] into a finite number of subsquares,
each of which is mapped by d into an open ball of radius ε.

• (p.201): Homomorphisms of simply connected groups. If g

and h are the Lie algebras of the simply connected Lie groups G and
H, respectively, and if ϕ : g → h is a homomorphism, then there is a
homomorphism Φ : G → H that induces ϕ.

• (p.201): Corollary. If G and H are simply connected Lie groups with
isomorphic Lie algebras g and h, respectively, then G is isomorphic
to H.
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