Key Results

Geometry: Naive Lie Theory (Honours)

C.C. Remsing Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown 6140

(Geometry of complex numbers and quaternions)

- (p.14): Rotation by conjugation. If $t = \cos \theta + u \sin \theta$, where $u \in \mathbb{R}\mathbf{i} + \mathbb{R}\mathbf{j} + \mathbb{R}\mathbf{k}$ is a unit vector, then conjugation by t rotates $\mathbb{R}\mathbf{i} + \mathbb{R}\mathbf{j} + \mathbb{R}\mathbf{k}$ through angle 2θ about axis u.
- (p.16): Rotations form a group. The product of rotations is a rotation, and the inverse of a rotation is a rotation.

(Groups)

- (p.26): \mathbb{S}^3 can be decomposed into disjoint congruent circles.
- (p.33): Simplicity of SO(3). The only nontrivial subgroup of SO(3) closed under conjugation is SO(3) itself.
- (p.37): Reflection representation of isometries. Any isometry of \mathbb{R}^n that fixes O is the product of at most n reflections in hyperplanes through O.
- (p.38): Quaternion representation of reflections. Reflection of $\mathbb{H} = \mathbb{R}^4$ in the hyperplane through O orthogonal to the unit quaternion u is the map that sends each $q \in \mathbb{H}$ to $-u\overline{q}u$.
- (p.39): Quaternion representation of rotations. Any rotation of ⊞ = ℝ⁴ about O is a map of the form q → vqw, where v and w are unit quaternions.

- (p.43): Size of the kernel. The homomorphism $\varphi : SU(2) \times SU(2) \rightarrow SO(4)$ is 2-to-1, because its kernel has two elements.
- (p.44): **SO(4)** is not simple. There is a nontrivial normal subgroup of SO(4), not equal to SO(4).

(Generalized rotation groups)

- (p.50): Rotation criterion. An $n \times n$ real matrix A represents a rotation of \mathbb{R}^n if and only if $AA^{\top} = \mathbf{1}$ and $\det(A) = 1$.
- (p.53): Path-connectedness of SO(n). For any n, SO(n) is pathconnected.
- (p.55): Criterion for preserving the inner product on \mathbb{C}^n . A linear transformation of \mathbb{C}^n preserves the inner product

$$(u_1, u_2, \dots, u_n) \bullet (v_1, v_2, \dots, v_n) = u_1 \overline{v}_1 + u_2 \overline{v}_2 + \dots + u_n \overline{v}_n$$

<u>if and only if</u> its matrix A satisfies $A\overline{A}^{\top} = \mathbf{1}$, where $\mathbf{1}$ is the identity matrix.

- (p.64): Maximal tori in generalized rotation groups. The tori listed above are maximal in the corresponding groups.
- (p.67): Centers of generalized rotation groups. The centers of the groups SO(n), U(n), SU(n), Sp(n) are:
 - 1. $Z(SO(2m)) = \{\pm 1\}.$
 - 2. $Z(SO(2m+1)) = \{1\}.$
 - 3. $Z(U(n)) = \{\omega \mathbf{1} : |\omega| = 1\}.$
 - 4. $Z(SU(n)) = \{\omega \mathbf{1} : \omega^n = 1\}.$
 - 5. $Z(Sp(n)) = \{\pm 1\}.$
- (p.69): Centrality of discrete normal subgroups. If G is a path-connected matrix Lie group with a discrete normal subgroup H, then H is contained in the center Z(G) of G.

(The exponential map)

- (p.77): Exponentiation theorem for H. When we write an arbitrary element of Ri + Rj + Rk in the form θu, where u is a unit vector, we have e^{θu} = cos θ+u sin θ and the exponential function maps Ri + Rj + Rk onto S³ = SU (2).
- (p.84): Submultiplicative property. For any two real $n \times n$ matrices A and B, $|AB| \leq |A| |B|$.
- (p.85): Convergence of the exponential series. If A is any $n \times n$ real matrix, then $1 + \frac{A}{1!} + \frac{A^2}{2!} + \frac{A^3}{3!} + \cdots$ is convergent in \mathbb{R}^{n^2} .

(The tangent space)

- (p.95): Tangent vectors of O(n), U(n), Sp(n). The tangent vectors X at 1 are matrices of the following forms:
 - (a) For O(n), $n \times n$ real matrices X such that $X + X^{\top} = \mathbf{0}$.
 - (b) For U(n), $n \times n$ complex matrices X such that $X + \overline{X}^{\top} = \mathbf{0}$.
 - (c) For $\operatorname{Sp}(n)$, $n \times n$ quaternion matrices X such that $X + \overline{X}^{\top} = \mathbf{0}$.
- (p.97): Tangent space of SO(n). The tangent space of SO(n) consists of precisely the $n \times n$ real vectors X such that $X + X^{\top} = \mathbf{1}$.
- (p.99): Tangent space of U(n) and Sp(n). The tangent space of U(n) consists of all the $n \times n$ complex matrices satisfying $X + \overline{X}^{\top} = \mathbf{0}$. The tangent space of Sp(n) consists of all $n \times n$ quaternion matrices X satisfying $X + \overline{X}^{\top} = \mathbf{0}$, where \overline{X} denotes the quaternion conjugate of X.
- (p.100): Determinant of exp. For any square matrix A, det $(e^A) = e^{\operatorname{Tr}(A)}$.
- (p.101): Tangent space of SU(n). The tangent space of SU(n) consists of all $n \times n$ complex matrices X such that $X + \overline{X}^{\top} = \mathbf{0}$ and Tr(X) = 0.

- (p.103): Vector space properties. $T_1(\mathsf{G})$ is a vector space over \mathbb{R} ; that is, for any $X, Y \in T_1(\mathsf{G})$ we have $X+Y \in T_1(\mathsf{G})$ and $rX \in T_1(\mathsf{G})$ for any real r.
- (p.104): Lie bracket property. $T_1(G)$ is closed under the Lie bracket, that is, if $X, Y \in T_1(G)$ then $[X, Y] \in T_1(G)$, where [X, Y] = XY - YX.
- (p.106): Dimension of so(n), u(n), su(n), and sp(n). As vector spaces over ℝ,
 - (a) $\mathfrak{so}(n)$ has dimension n(n-1)/2.
 - (b) $\mathfrak{u}(n)$ has dimension n^2 .
 - (c) $\mathfrak{su}(n)$ has dimension $n^2 1$.
 - (d) $\mathfrak{sp}(n)$ has dimension n(2n+1).

(Structure of Lie algebras)

- (p.117): Tangent space of a normal subgroup. If H is a normal subgroup of a matrix Lie group G, then $T_1(H)$ is an ideal of the Lie algebra $T_1(G)$.
- (p.119): Simplicity of the cross-product algebra. The cross-product algebra is simple.
- (p.120): Kernel of a Lie algebra homomorphism. If φ : g → g' is a Lie algebra homomorphism, and h = {X ∈ g : φ(X) = 0} is its kernel, then h is an ideal of g.
- (p.125): Simplicity of sl(n,C). For each n, sl(n, C) is a simple Lie algebra.
- (p.126): Simplicity of su(n). For each n, su(n) is a simple Lie algebra.
- (p.130): Simplicity of so(n). For each n > 4, so(n) is a simple Lie algebra
- (p.134): Simplicity of sp(n). For all n, sp(n) is a simple Lie algebra.

(The matrix logarithm)

- (p.140): Inverse property of matrix logarithm. For any matrix e^X within distance 1 of the identity, $\log(e^X) = X$.
- (p.141): Multiplicative property of matrix logarithm. If AB = BA, and $\log(A)$, $\log(B)$, and $\log(AB)$ are all defined, then $\log(AB) = \log(A) + \log(B)$.
- (p.143): Exponentiation of tangent vectors. If A'(0) is the tangent vector at 1 to a matrix Lie group G, then $e^{A'(0)} \in G$. That is, exp maps the tangent space $T_1(G)$ into G.
- (p.146): Smoothness of sequential tangency. Suppose that (A_m) is a sequence in a matrix Lie group G such that $A_m \to \mathbf{1}$ as $m \to \infty$, and that (α_m) is a sequence of real numbers such that $(A_m \mathbf{1})/\alpha_m \to X$ as $m \to \infty$. Then $e^{tX} \in \mathsf{G}$ for all real t (and therefore X is the tangent at $\mathbf{1}$ to the smooth path e^{tX}).
- (p.148): The log of a neighborhood of 1. For any matrix Lie group G there is a neighborhood $N_{\delta}(1)$ mapped into $T_1(G)$ by log.
- (p.149): Corollary. The log function gives a bijection, continuous in both directions, between $N_{\delta}(1)$ in G and log $N_{\delta}(1)$ in $T_1(G)$.
- (p.150): Tangent space visibility. If G is a path-connected matrix Lie group with discrete center and a nondiscrete normal subgroup H, then $T_1(H) \neq \{0\}$.
- (p.151): Corollary. If H is a nontrivial normal subgroup of G under the conditions above, then $T_1(H)$ is a nontrivial ideal of $T_1(G)$.
- (p.154): Campbell-Baker-Hausdorff theorem. For each $n \ge 1$, the polynomial $F_n(A, B)$ in

$$e^{A}e^{B} = e^{Z}, \quad Z = F_{1}(A, B) + F_{2}(A, B) + F_{3}(A, B) + \cdots$$

is Lie.

(Topology)

- (p.169): Heine-Borel theorem. If [0,1] is contained in a union of open intervals U_i, then the union of finitely many U_i also contains [0,1].
- (p.171): Continuous image of a compact set. If \mathcal{K} is compact and f is a continuous function defined on \mathcal{K} , then $f(\mathcal{K})$ is compact.
- (p.172): Uniform continuity. If \mathcal{K} is a compact subset of \mathbb{R}^m and $f: \mathcal{K} \to \mathbb{R}^n$ is continuous, then f is uniformly continuous.
- (p.175): Normality of the identity component. If G⁰ is the identity component of a matrix Lie group G, then G⁰ is a normal subgroup of G.
- (p.176): Generating a path-connected group. If G is a path-connected matrix Lie group, and N_δ(1) is a neighborhood of 1 in G, then any element of G is a product of members of N_δ(1).
- (p.177): Corollary. If G is a path-connected matrix Lie group, then each element of G has the form $e^{X_1}e^{X_2}\cdots e^{X_m}$ for some $X_1, X_2, \ldots, X_m \in T_1(G)$.
- (p.179): Unique path lifting. Suppose that p is a path in S¹ with initial point P, and P̃ is a point in ℝ over Q. Then there is a unique path p̃ in ℝ such that p̃(0) = P̃ and f ∘ p̃ = p. We call p̃ the lift of p with initial point P̃.

(Simply connected Lie groups)

- (p.191): The induced homomorphism. For any Lie homomorphism Φ : G → H of matrix Lie groups G, H, with Lie algebras g, h, respectively, there is a Lie homomorphism φ : g → h such that φ(A'(0)) = (φ ∘ A)'(0) for any smooth path A(t) through 1 in G.
- (p.194): Uniform continuity of paths. If p : [0, 1] → ℝⁿ is a path, then, for any ε > 0, it is possible to devide [0, 1] into a finite number of subintervals, each of which is mapped by p into an open ball of radius ε.

- (p.194): Uniform continuity of path deformations. If d: [0,1] × [0,1] → ℝⁿ is a path deformation, then, for any ε > 0, it is possible to devide the square [0,1] × [0,1] into a finite number of subsquares, each of which is mapped by d into an open ball of radius ε.
- (p.201): Homomorphisms of simply connected groups. If g and h are the Lie algebras of the simply connected Lie groups G and H, respectively, and if φ : g → h is a homomorphism, then there is a homomorphism Φ : G → H that induces φ.
- (p.201): Corollary. If G and H are simply connected Lie groups with isomorphic Lie algebras g and h, respectively, then G is isomorphic to H.