RHODES UNIVERSITY DEPARTMENT of MATHEMATICS (Pure & Applied) CLASS TEST No. 2 : MAY 2011 MATHEMATICS HONOURS

GEOMETRY (NAIVE LIE THEORY)

AVAILABLE MARKS : 52 FULL MARKS : 50 DURATION : 1 HOUR

NB : All questions may be attempted.

Question 1. (26 marks)

- (a) Given a matrix group G, define its *tangent space at the identity*, T_1 G. Hence, prove that
 - i. $T_1 \mathsf{G}$ is a vector space (over \mathbb{R});
 - ii. T_1G is closed under the Lie bracket (matrix commutator).
- (b) Prove that (the tangent space of the rotation group SO(n) at the identity) $T_1SO(n)$ consists of precisely the $n \times n$ real matrices X such that $X + X^{\top} = \mathbf{0}$.

[6, 12, 8]

Question 2. (26 marks)

- (a) Define the terms *Lie algebra* and *ideal* (in a Lie algebra) and then explain what is meant by saying that a Lie algebra is *simple*. Hence, show that the cross-product Lie algebra \mathbb{R}^3_{\wedge} is simple.
- (b) Show that $\operatorname{Tr}([X,Y]) = 0$ for any $X, Y \in \mathfrak{gl}(n,\mathbb{C})$. Hence, deduce that $\mathfrak{sl}(n,\mathbb{C})$ is an ideal of $\mathfrak{gl}(n,\mathbb{C})$.

[16, 10]