RHODES UNIVERSITY DEPARTMENT of MATHEMATICS (Pure & Applied) CLASS TEST No. 1 : APRIL 2012 MATHEMATICS HONOURS

GEOMETRY (NAIVE LIE THEORY)

AVAILABLE MARKS : 54 FULL MARKS : 50 DURATION : 1 HOUR

NB : All questions may be attempted.

Question 1. (26 marks)

- (a) Define the term *quaternion*, and then show that the product of quaternions is a quaternion.
- (b) Given a quaternion q, define the quaternion conjugate \overline{q} and the absolute value |q|. Hence show that $q\overline{q} = |q|^2$.
- (c) Let u be a pure imaginary quaternion with |u| = 1. Prove that $u^2 = -1$.
- (d) Explain what is meant by saying that a quaternion t of absolute value 1 can be expressed as

$$t = \cos\theta + u\,\sin\theta$$

where u is a unit vector in $\mathbb{R}\mathbf{i} + \mathbb{R}\mathbf{j} + \mathbb{R}\mathbf{k}$. Hence prove that the conjugation by t rotates $\mathbb{R}\mathbf{i} + \mathbb{R}\mathbf{j} + \mathbb{R}\mathbf{k}$ through angle 2θ about axis u.

[4, 6, 4, 12]

Question 2. (28 marks)

- (a) Prove that the 3-sphere $\mathbb{S}^3 \subset \mathbb{R}^4$ is a group. Is this group Abelian? Justify your answer.
- (b) Prove that \mathbb{S}^3 can be decomposed into disjoint congruent circles.
- (c) Define the term *direct product of groups*. Hence show that $\mathbb{S}^1 \times \mathbb{S}^1 \times \mathbb{S}^1$ is a group.
- (d) Explain what is meant by saying that two groups are *isomorphic*. Hence prove that the groups \mathbb{S}^3 and $\mathbb{S}^1 \times \mathbb{S}^1 \times \mathbb{S}^1$ are <u>not</u> isomorphic.

[6,10,6,6]