RHODES UNIVERSITY DEPARTMENT of MATHEMATICS (Pure & Applied) CLASS TEST No. 2 : MAY 2012 MATHEMATICS HONOURS

GEOMETRY (NAIVE LIE THEORY)

AVAILABLE MARKS : 54 FULL MARKS : 50 DURATION : 1 HOUR

NB : All questions may be attempted.

Question 1. (26 marks)

- (a) Define the matrix group $\mathsf{SU}(2)$ and show that $\mathsf{SU}(2) = \mathbb{S}^3 \subset \mathbb{R}^4$.
- (b) Define the *tangent space* at **1** of SU(2). Hence show that the tangent space of SU(2) at **1** is $\mathbb{R}\mathbf{i} + \mathbb{R}\mathbf{j} + \mathbb{R}\mathbf{k}$.
- (c) Let $T_1 SU(2) = \mathbb{R} \mathbf{i} + \mathbb{R} \mathbf{j} + \mathbb{R} \mathbf{k}$. Prove that if $U, V \in T_1 SU(2)$, then (the matrix commutator) $[U, V] \in T_1 SU(2)$.

[6,8,12]

Question 2. (28 marks)

- (a) Define the term *matrix Lie algebra* and then carefully explain what is meant by saying that any real matrix Lie algebra \mathfrak{g} has a *complexification* $\mathfrak{g} + i\mathfrak{g}$.
- (b) Define the (matrix) Lie algebra $\mathfrak{su}(n)$ and then show that $\mathfrak{su}(n)$ is <u>not</u> a vector space over \mathbb{C} .
- (c) Prove that the complexification of $\mathfrak{su}(n)$ is $\mathfrak{sl}(n,\mathbb{C})$.

[6,10,12]