RHODES UNIVERSITY

DEPARTMENT of MATHEMATICS (Pure & Applied)

CLASS TEST No. 1: MARCH 2013

MATHEMATICS HONOURS

GEOMETRY (NAIVE LIE THEORY)

AVAILABLE MARKS : 55 FULL MARKS : 50 DURATION : 1 HOUR

NB : All questions may be attempted.

Question 1. (25 marks)

(a) Given a quaternion $q = a \mathbf{1} + b \mathbf{i} + c \mathbf{j} + d \mathbf{k} \in \mathbb{H}$, define the quaternion conjugate \overline{q} and then show that

$$\overline{q_1q_2} = \overline{q}_2\overline{q}_1.$$

- (b) Prove that the set $\mathbb{S}^3 \subset \mathbb{H} = \mathbb{R}^4$ of unit quaternions forms a group, under the quaternion multiplication.
- (c) Explain what is meant by saying that a quaternion $\,t\,$ of absolute value $\,1\,$ can be expressed as

$$t = \cos\theta + u\,\sin\theta$$

where u is a unit vector in $\mathbb{R}\mathbf{i} + \mathbb{R}\mathbf{j} + \mathbb{R}\mathbf{k}$. Hence prove that the conjugation by t rotates $\mathbb{R}\mathbf{i} + \mathbb{R}\mathbf{j} + \mathbb{R}\mathbf{k}$ through angle 2θ about axis u.

[5,5,15]

Question 2. (30 marks)

(a) Define what is meant by a rotation in (the Euclidean space) \mathbb{R}^n . Hence prove that an $n \times n$ real matrix A represents a rotation if and only if

$$AA^{\top} = \mathbf{1}$$
 and $\det A = 1$.

(b) Explain what is meant by saying that a set $S \subset \mathbb{R}^n$ is path-connected. Hence prove that (the rotation group)

$$SO(3) \subset Mat(3,\mathbb{R}) = \mathbb{R}^9$$

is path-connected.

(c) Define the *center* $Z(\mathsf{G})$ of the (matrix Lie) group G , and then compute $Z(\mathsf{SO}(3))$.

[10,10,10]