RHODES UNIVERSITY DEPARTMENT OF MATHEMATICS (Pure & Applied)

EXAMINATION : JUNE 2011 MATHEMATICS HONOURS

Examiners : Dr C.C. Remsing Prof B. Makamba AVAILABLE MARKS : 110 FULL MARKS : 100 DURATION : 3 HOURS

GEOMETRY (LIE THEORY)

NB : All questions may be attempted. All steps must be clearly motivated. Marks will not be awarded if this is not done.

Question 1. [16 marks]

(a) Show (by using quaternions or otherwise) that the 3-sphere

$$\mathbb{S}^{3} = \left\{ (x, y, z, t) \in \mathbb{R}^{4} : x^{2} + y^{2} + z^{2} + t^{2} = 1 \right\} \subset \mathbb{R}^{4}$$

can be regarded as a matrix Lie group.

- (b) Define the orthogonal group SO(3) and then show that the unit circle S^1 is <u>not</u> a normal subgroup of SO(3).
- (c) Give a direct, geometric proof of the fact that the only nontrivial normal subgroup of SO(3) is SO(3) itself.

[3, 5, 8]

Page 1 of 4

Question 2. [16 marks]

- (a) Explain what is meant by the *Hermitian inner product* on the complex vector space \mathbb{C}^n . Hence, define the *unitary groups* U(n) and SU(n).
- (b) Prove that a linear transformation on \mathbb{C}^n preserves the Hermitian inner product if and only if its matrix A satisfies

$$A\bar{A}^{\top} = \mathbf{1}.$$

(c) Define the terms maximal torus and center of a matrix Lie group. What is the maximal torus in U(n)? (Make a clear statement but DO NOT prove it.) Find the center of U(n).

[2, 6, 8]

Question 3. [18 marks]

(a) Define the *matrix exponential* e^A , and then show (by term-by-term differentiation, or otherwise) that

$$\frac{d}{dt} e^{tA} = A e^{tA} = e^{tA} A.$$

- (b) Define the *tangent space* at (the identity) **1** of a matrix Lie group G, $T_1(G)$. Hence, find $T_1(SL(2,\mathbb{C}))$. Verify that $T_1(SL(2,\mathbb{C}))$ is (real) Lie algebra of dimension three.
- (c) Show that the matrix $\begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix}$ in $\mathsf{SL}(2,\mathbb{C})$ is <u>not</u> equal to e^X for any $X \in T_1(\mathsf{SL}(2,\mathbb{C}))$. (HINT : Use the *Cayley-Hamilton* theorem to show that $X^2 = -\det(X)\mathbf{1}$ whenever $\operatorname{Tr}(X) = 0$. Then show that $e^X = \cos(\sqrt{\det(X)}\mathbf{1} + \frac{\sin(\sqrt{\det(X)})}{\sqrt{\det(X)}}X$ and hence derive a contradiction.)

[4, 6, 8]

Page 2 of 4

Question 4. [20 marks]

- (a) Define the term *ideal* (of a Lie algebra), and then explain what is meant by saying that a Lie algebra is *simple*. Hence, prove that sl(n, C) is simple.
- (b) Consider the Lie algebra $\mathfrak{gl}(2,\mathbb{H})$ and the sets

$$\begin{aligned} \mathfrak{R} &= \{ X \in \mathfrak{gl} \left(2, \mathbb{H} \right) \, \colon \, X = r \, \mathbf{1}, \, r \in \mathbb{R} \} \\ \mathfrak{T} &= \{ X \in \mathfrak{gl} \left(2, \mathbb{H} \right) \, \colon \operatorname{re} \left(\operatorname{Tr} \left(X \right) \right) = 0 \} \end{aligned}$$

where re denotes the real part of the quaternion.

- i. Prove that \mathfrak{R} and \mathfrak{T} are *ideals* of $\mathfrak{gl}(2,\mathbb{H})$.
- ii. Show that each element $X \in \mathfrak{gl}(2, \mathbb{H})$ has a unique decomposition of the form

$$X = R + T$$

where $R \in \mathfrak{R}$ and $T \in \mathfrak{T}$.

[10, 10]

Question 5. [20 marks]

(a) Define the *matrix logarithm*, and then prove that, if AB = BA and $\log(A)$, $\log(B)$ and $\log(AB)$ are all defined, then

$$\log (AB) = \log (A) + \log (B).$$

- (b) Define the term *matrix Lie group*, and then prove that for any matrix Lie group G, there is a neighborhood $N_{\delta}(1)$ mapped into (the tangent space) $T_1(G)$ by log.
- (c) Prove that (the special unitary group) SU(n) is a *normal* subgroup of (the unitary group) U(n).

[5,10,5]

Page 3 of 4

Question 6. [20 marks]

- (a) Explain what is meant by saying that a matrix Lie group G is *path-connected*. Hence, prove that if G is a path-connected Lie group and $N_{\delta}(\mathbf{1})$ is a neighborhood of $\mathbf{1}$ in G, then any element of G is a product of members of $N_{\delta}(\mathbf{1})$.
- (b) Show that

$$\begin{bmatrix} -1 & 1\\ 0 & -1 \end{bmatrix} = e^X e^Y$$

for some $X, Y \in T_1(\mathsf{SL}(2,\mathbb{C}))$. (HINT: Write $\begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix}$ as the product of two matrices in $\mathsf{SL}(2,\mathbb{C})$ with entries 0, i or -i.)

(c) Define carefully the term *Lie group homomorphism*. Hence, prove that for any Lie group homomorphism $\Phi : \mathsf{G} \to \mathsf{H}$ (of matrix Lie groups G and H with Lie algebras \mathfrak{g} and \mathfrak{h} , respectively), there is a Lie algebra homomorphism $\phi : \mathfrak{g} \to \mathfrak{h}$ such that

$$\phi(A'(0)) = (\Phi \circ A)'(0)$$

for any smooth path $A(\cdot)$ through 1 in G.

[8, 6, 6]

END OF THE EXAMINATION PAPER