RHODES UNIVERSITY DEPARTMENT OF MATHEMATICS (Pure & Applied)

EXAMINATION : JUNE 2012 MATHEMATICS HONOURS

Examiners : Dr C.C. Remsing Prof B. Makamba AVAILABLE MARKS : 110 FULL MARKS : 100 DURATION : 3 HOURS

GEOMETRY (LIE THEORY)

NB : All questions may be attempted. All steps must be clearly motivated. Marks will not be awarded if this is not done.

Question 1. [20 marks]

(a) Explain what is meant by a *rotation* in \mathbb{R}^n . Hence prove that an $n \times n$ real matrix A represents a rotation of \mathbb{R}^n if and only if

 $AA^{\top} = \mathbf{1}$ and $\det(A) = 1$.

- (b) Define a *maximal torus* and the *center* of a (matrix) Lie group. Hence give
 - (without justification) a maximal torus in SO(4)
 - (with justification) the center of SO(5).
- (c) Find the center Z(G) of the group

$$G = \{1, -1, i, -i, j, -j, k, -k\}$$

and hence show that G/Z(G) has nontrivial center.

[8, 8, 4]

Page 1 of 3

Question 2. [16 marks]

Let $A, B, C \in M_n(\mathbb{R})$.

(a) Show that the *exponential series*

$$\mathbf{1} + \frac{1}{1!}A + \frac{1}{2!}A^2 + \frac{1}{3!}A^3 + \cdots$$

is convergent in \mathbb{R}^{n^2} .

(b) Prove that

$$\det (e^A) = e^{\operatorname{Tr}(A)}$$

(c) If A is of the form BCB^{-1} , show that $e^A = B e^C B^{-1}$.

[4,8,4]

Question 3. [20 marks]

- (a) Define the tangent space $T_1(\mathsf{G})$ of a matrix (Lie) group G . Hence show that $T_1\mathsf{SO}(n)$ consists of precisely the $n \times n$ real vectors (matrices) X such that $X + X^{\top} = \mathbf{0}$.
- (b) Find the tangent space $T_1(\mathsf{SL}(2,\mathbb{C}))$ and then verify that $T_1(\mathsf{SL}(2,\mathbb{C}))$ is a (real) Lie algebra of dimension three.
- (c) Show that the matrix $\begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix}$ in $\mathsf{SL}(2,\mathbb{C})$ is <u>not</u> equal to e^X for any $X \in T_1(\mathsf{SL}(2,\mathbb{C}))$.

(HINT : Use the *Cayley-Hamilton* theorem to show that $X^2 = -\det(X)\mathbf{1}$ whenever $\operatorname{Tr}(X) = 0$. Then show that

$$e^{X} = \cos\left(\sqrt{\det\left(X\right)}\,\mathbf{1} + \frac{\sin\left(\sqrt{\det\left(X\right)}\right)}{\sqrt{\det\left(X\right)}}\,X$$

and hence derive a contradiction.)

[6, 6, 8]

Page 2 of 3

Question 4. [22 marks]

- (a) Define the term *ideal* (of a Lie algebra), and then prove that if H is a normal subgroup of a matrix Lie group G, then T_1H is an ideal of the Lie algebra T_1G .
- (b) Show that $\mathfrak{sl}(n,\mathbb{C})$ is an ideal of $\mathfrak{gl}(n,\mathbb{C})$.
- (c) Explain what is meant by saying that a Lie algebra is simple. Hence prove that $\mathfrak{sl}(n,\mathbb{C})$ is simple.

[6,4,12]

Question 5. [16 marks]

- (a) Define the *matrix logarithm*, and then prove that for any matrix e^X within distance 1 of the identity, $\log(e^X) = X$.
- (b) Prove that for any matrix Lie group G there is a neighborhood $N_{\delta}(\mathbf{1})$ mapped into $T_{\mathbf{1}}G$ by log.

[4, 12]

Question 6. [16 marks]

- (a) Define the terms open set, path-connected set and compact set (in \mathbb{R}^k). Hence show that $\mathsf{GL}(n,\mathbb{R})$ is open in $M_n(\mathbb{R}) = \mathbb{R}^{n^2}$, and that $\mathsf{SO}(n)$ is compact in $M_n(\mathbb{R}) = \mathbb{R}^{n^2}$.
- (b) Define the *identity component* of a matrix Lie group, and then prove that if G^0 is the identity component of a matrix Lie group G, then G^0 is a normal subgroup of G.

[8,8]

END OF THE EXAMINATION PAPER

Page 3 of 3