RHODES UNIVERSITY DEPARTMENT OF MATHEMATICS (Pure & Applied)

EXAMINATION : JUNE 2013 MATHEMATICS HONOURS

Examiners : Dr C.C. Remsing Prof B. Makamba AVAILABLE MARKS : 110 FULL MARKS : 100 DURATION : 3 HOURS

GEOMETRY (LIE THEORY)

NB : All questions may be attempted. All steps must be clearly motivated. Marks will not be awarded if this is not done.

Question 1. [20 marks]

- (a) Explain what is meant by saying that a group is *simple*. Hence prove that (the rotation group) SO(3) is simple.
- (b) Consider the map

 $\varphi : \mathsf{SU}(2) \times \mathsf{SU}(2) \to \mathsf{SO}(4) \quad (v,w) \mapsto \varphi(v,w)$

where (the rotation of $\mathbb{H} = \mathbb{R}^4$) $\varphi(v, w)$ is given by $q \mapsto v^{-1}qw$. (Recall that any rotation of \mathbb{H} about the origin is a map of the form $q \mapsto v q w$, where v and w are unit quaternions.) Show that

- i. φ is a group homomorphism.
- ii. the kernel of $\,\varphi\,$ has two elements.
- (c) Prove that (the rotation group) SO(4) is <u>not</u> simple.

[10, 6, 4]

Page 1 of 3

Question 2. [20 marks]

- (a) Show that a linear transformation on \mathbb{C}^n preserves the *Hermitian* inner product if and only if its matrix A satisfies the condition $A\bar{A}^{\top} = \mathbf{1}.$
- (b) Define the (special unitary) group SU(2), and then verify that it is a group. Is SU(2) path-connected ? Make a clear statement and then prove it.
- (c) Define the *center* Z(G) of a group G, and then determine Z(SU(2)).

[4,10,6]

Question 3. [18 marks]

- (a) Define the tangent space $T_1 \mathsf{G}$ of a matrix (Lie) group G . Hence show that $T_1\mathsf{SU}(n)$ consists of all $n \times n$ complex matrices X such that $X + \bar{X}^\top = \mathbf{0}$ and $\operatorname{Tr}(X) = 0$.
- (b) Prove that for any square matrix A,

$$\det\left(e^{A}\right) = e^{\operatorname{Tr}\left(A\right)}.$$

(c) If A is an $n \times n$ complex matrix such that $A\bar{A}^{\top} = \mathbf{1}$, show that

 $\left|\det(A)\right| = 1.$

[6,10,2]

Page 2 of 3

Question 4. [18 marks]

- (a) Define the term *ideal* (of a Lie algebra), and then prove that if $\varphi : \mathfrak{g} \to \mathfrak{g}'$ is a Lie algebra homomorphism, then its kernel is an ideal.
- (b) Explain what is meant by saying that a Lie algebra is simple. Hence prove that $\mathfrak{sl}(n, \mathbb{C})$ is simple.

[6, 12]

Question 5. [18 marks]

- (a) Define the term *matrix Lie group*, and then prove that if A'(0) is a tangent vector at **1** to a matrix Lie group **G**, then $e^{A'(0)} \in \mathbf{G}$.
- (b) Suppose that $\langle A_m \rangle$ is a sequence in a matrix Lie group **G** such that $A_m \to \mathbf{1}$ as $m \to \infty$ and that $\langle \alpha_m \rangle$ is a sequence of real numbers such that $\frac{A_m-\mathbf{1}}{\alpha_m} \to X$ as $m \to \infty$. Prove that $e^{tX} \in \mathbf{G}$ for all $t \in \mathbb{R}$.

Question 6. [16 marks]

- (a) Show that $\mathsf{GL}(n,\mathbb{R})$ is open in $M_n(\mathbb{R}) = \mathbb{R}^{n^2}$.
- (b) Let ${\sf G}$ be a path-connected matrix Lie group. Prove that each element of ${\sf G}$ has the form

$$e^{X_1}e^{X_2}\cdots e^{X_m}$$

for some $X_1, X_2, \ldots, X_m \in T_1 \mathsf{G}$.

[4, 12]

END OF THE EXAMINATION PAPER

Page 3 of 3