RHODES UNIVERSITY DEPARTMENT of MATHEMATICS (Pure & Applied) CLASS TEST No. 1 : MARCH 2006

M2.1 (TRANSFORMATION GEOMETRY)

AVAILABLE MARKS : 58 FULL MARKS : 50 DURATION : 1 HOUR

NB : All questions may be attempted.

Question 1. TRUE or FALSE ?

- (a) The *identity transformation* ι is in every group of transformations \mathfrak{G} .
- (b) The image of any line \mathcal{L} under a given *collineation* is a line *parallel* to \mathcal{L} .
- (c) The product of *three* halfturns is a halfturn.
- (d) Reflection $\rho_{\mathcal{L}}$ fixes line \mathcal{M} if and only if $\mathcal{L} \perp \mathcal{M}$.

[2,2,2,2]

Question 2.

- (a) Define the terms involution, collineation, and group of transformations.
- (b) Give *with justification* an example of an involution and an example of a collineation which is *not* an involution.
- (c) Prove ONLY ONE of the following statements :
 - The set of all collineations forms a group.
 - A reflection is an isometry.

[4, 6, 4]

Question 3. PROVE or DISPROVE :

- (a) Any translation is a product of two halfturns *and* any halfturn is a product of two translations.
- (b) A rotation preserves midpoints and segments.

[8, 8]

Question 4.

- (a) Given the points A = (1,3) and B = (4,4), write the equations for each of the following transformations :
 - i. σ_A ;
 - ii. σ_B ;
 - iii. $\sigma_B \sigma_A$.
- (b) Is transformation $\sigma_B \sigma_A$ a collineation ? Find the image of the line \mathcal{N} with equation x 3y + 1 = 0 under $\sigma_B \sigma_A$.
- (c) Write the equations for the *reflection* $\sigma_{\mathcal{L}}$, where \mathcal{L} is the line with equation x y + 1 = 0.
- (d) Find the image of the point P = (1, 1) under $\sigma_{\mathcal{L}}$.
- (e) What happens with the line \mathcal{M} with equation x + y = 0 under $\sigma_{\mathcal{L}}$? Justify your answer.

[4, 6, 4, 1, 5]