RHODES UNIVERSITY DEPARTMENT of MATHEMATICS (Pure & Applied) CLASS TEST No. 2 : MAY 2006

M2.1 (TRANSFORMATION GEOMETRY)

AVAILABLE MARKS : 58 FULL MARKS : 50 DURATION : 1 HOUR

NB : All questions may be attempted.

Question 1. TRUE or FALSE ?

- (a) An isometry that fixes a point is an involution.
- (b) A product of five reflections is an involutory isometry.
- (c) The square of a glide reflection is a glide reflection.
- (d) If \mathcal{L} is any line, then every odd isometry is the product of $\sigma_{\mathcal{L}}$ followed by an even isometry.

[2,2,2,2]

Question 2.

- (a) Define the terms *odd isometry*, *involutory isometry*, and *glide reflection*. Prove that a glide reflection is an odd isometry. Is it an involution ? Justify your answer.
- (b) Prove ONLY ONE of the following statements :
 - If lines \mathcal{L} and \mathcal{M} are parallel, then the transformation $\sigma_{\mathcal{M}}\sigma_{\mathcal{L}}$ is a translation.
 - Rotation $\rho_{O,r}$ (about the origin) has equations

$$x' = (\cos r)x - (\sin r)y$$

$$y' = (\sin r)x + (\cos r)y.$$

[8, 6]

Question 3. PROVE or DISPROVE :

- (a) Every isometry is either a product of five reflections or a product of six reflections.
- (b) Any two rotations do commute.

[8,8]

Question 4.

- (a) If $\sigma_{\mathcal{M}}\sigma_{\mathcal{L}}((x,y)) = (x+3, y-6)$, find equations for lines \mathcal{L} and \mathcal{M} . Is the solution unique ? Justify your answer.
- (b) Show that the transformation

$$(x,y) \mapsto (-x+h,y+k), \quad h,k \in \mathbb{R}$$

represent an *odd isometry*.

- (c) For what values (if any) of the parameters h and k is the isometry in (b)
 - i. a glide reflection ?
 - ii. a reflection ?

In each case, find the (equation of) the line *fixed* by the isometry.

[8,2,10]