RHODES UNIVERSITY DEPARTMENT of MATHEMATICS (Pure & Applied) CLASS TEST No. 1 : AUGUST 2007

M2.1 (TRANSFORMATION GEOMETRY)

AVAILABLE MARKS : 50 FULL MARKS : 50 DURATION : 1 HOUR

NB : All questions may be attempted.

Question 1. TRUE or FALSE ?

- (a) There exist points P, Q, R such that $PR \ge PQ + QR$.
- (b) If $\tau_{A,B}(C) = D$ then $\tau_{A,B} = \tau_{D,C}$.
- (c) The product of *five* halfturns is a halfturn.
- (d) Every rotation is an isometry.

[2,2,2,2]

Question 2.

- (a) Define the terms collineation, isometry, and group of transformations.
- (b) Prove ONLY ONE of the following statements :
 - The set of all collineations forms a group.
 - Every isometry is a collineation.

[4, 4]

Question 3. PROVE or DISPROVE :

- (a) The product of two reflections is a reflection.
- (b) $\sigma_P \tau_{A,B} \sigma_P = \tau_{C,D}$ where $C = \sigma_P(A)$ and $D = \sigma_P(B)$.

[8,8]

Question 4. Consider the points

 $A = (-1, -1), \quad B = (0, 1), \text{ and } C = (1, 1).$

- (a) Write the equations for each of the following transformations :
 - i. σ_A ; ii. σ_B ; iii. σ_C ;
 - iv. $\tau_{B,A}$.
- (b) Find (the point) X such that

$$\sigma_A \sigma_B \sigma_C = \sigma_X.$$

(c) Find (the point) Y such that

$$\sigma_C \tau_{A,B} = \sigma_Y.$$

[4,2,2]

Question 5. Consider the point P = (h, k) and the line \mathcal{L} with equation y = 0.

- (a) Write the equations of the halfturn σ_P .
- (b) Write the equations of the reflection $\sigma_{\mathcal{L}}$.
- (c) Is the product $\sigma_P \sigma_L$ a collineation ? Justify carefully your answer.
- (d) Determine (necessary and sufficient) conditions under which the following identity holds :

$$\sigma_P \sigma_{\mathcal{L}} = \sigma_{\mathcal{L}} \sigma_P.$$

Express your result in geometric terms.

[1,1,4,4]