RHODES UNIVERSITY DEPARTMENT of MATHEMATICS (Pure & Applied) CLASS TEST No. 2 : SEPTEMBER 2007

M2.1 (TRANSFORMATION GEOMETRY)

AVAILABLE MARKS : 50 FULL MARKS : 50 DURATION : 1 HOUR

NB : All questions may be attempted.

Question 1. TRUE or FALSE ?

- (a) If an isometry fixes three points, then the isometry must be the identity.
- (b) An isometry that fixes exactly one point is a nonidentity rotation.
- (c) $\rho_{B,r}\rho_{A,-r}$ is the translation that takes A to B.
- (d) Every odd isometry is the product of an even isometry followed by a reflection.

[2,2,2,2]

Question 2.

- (a) Define the terms even isometry, involution, dilatation, and glide reflection.
- (b) Prove ONLY ONE of the following statements :
 - Translation τ commutes with the reflection $\sigma_{\mathcal{L}}$ if and only if τ fixes \mathcal{L} .
 - The rotation $\rho_{O,r}$ about the origin has equations

$$x' = (\cos r)x - (\sin r)y$$

$$y' = (\sin r)x + (\cos r)y.$$

[4,8]

Question 3. PROVE or DISPROVE :

- (a) If α and β are isometries such that $\alpha^2 = \beta^2$, then $\alpha = \beta$ or $\alpha = \beta^{-1}$.
- (b) Every isometry is either a product of five reflections or a product of six reflections.

[8,8]

Question 4. Consider the points

$$A = (1,3)$$
 and $B = (5,5)$

and the line \mathcal{C} with equation

$$x - 2y = 0.$$

- (a) Write the equations for the *reflection* σ in line C.
- (b) Find the image A' of the point A under the reflection σ .
- (c) Write the equations for the translation τ such that $\tau(A') = B$.
- (d) Write the equations for the (counter-clockwise) rotation ρ about the point A through an angle of 45°.
- (e) Find the (equations of the) glide reflection γ with axis C such that $\gamma(A) = (7, 1)$.

[2,1,1,2,4]

Question 5. Find the (coordinates of the) *centre* of the rotation with equations

$$\begin{aligned} x' &= (\cos r)x - (\sin r)y + 2 \\ y' &= (\sin r)x + (\cos r)y, \quad r^{\circ} \neq 0^{\circ}. \end{aligned}$$

[4]	
- 1	