RHODES UNIVERSITY

DEPARTMENT of MATHEMATICS (Pure & Applied)

CLASS TEST No. 1: AUGUST 2009

M2.1 (TRANSFORMATION GEOMETRY)

AVAILABLE MARKS : 54 FULL MARKS : 50

DURATION: 1 HOUR

NB : All questions may be attempted.

Question 1. TRUE or FALSE?

- (a) For any transformations α and β , $(\alpha\beta)^{-1} = \alpha^{-1}\beta^{-1}$.
- (b) For any points A and B, $\sigma_B \sigma_A = \tau_{A,B}^2$.
- (c) The image of any line under a given dilatation is a line.
- (d) Every involution is a halfturn.

[2,2,2,2]

Question 2.

- (a) Define the terms transformation, group of transformations, isometry, and collineation.
- (b) Give with justification an example of a transformation which is not a collineation, and an example of a collineation which is not an isometry.
- (c) Prove ONLY ONE of the following statements :
 - Every isometry is a collineation.
 - Every rotation is an isometry.

[4,6,8]

Question 3. PROVE or DISPROVE :

- (a) The set of all halfturns forms a group.
- (b) $\tau_{B,D}\sigma_A\tau_{D,C} = \sigma_D$, where A is the midpoint of B and C, and $D = \sigma_B(A)$.

[8,8]

Question 4. Consider the points

$$A = (2, -1), \quad B = (2, 3)$$

and the line

$$(\mathcal{L}) \quad x + y - 3 = 0.$$

- (a) Write the equations for each of the following transformations:
 - i. the translation $\tau_{A,B}$;
 - ii. the halfturns σ_A and σ_B ;
 - iii. the reflection $\sigma_{\mathcal{L}}$.
- (b) Is transformation $\alpha = \sigma_B \sigma_A$ a collineation? Find the image of \mathcal{L} under α .
- (c) What happens with line \mathcal{M} with equation x-y=0 under the reflection $\sigma_{\mathcal{L}}$? Justify your answer.

[4,4,4]