RHODES UNIVERSITY

DEPARTMENT of MATHEMATICS (Pure & Applied)

CLASS TEST No. 2: OCTOBER 2009

M2.1 (TRANSFORMATION GEOMETRY)

AVAILABLE MARKS : 55 FULL MARKS : 50

DURATION: 1 HOUR

NB: All questions may be attempted.

Question 1. TRUE or FALSE?

- (a) The product of four reflections is a product of two reflections.
- (b) The product of reflections in *four* intersecting lines is a reflection.
- (c) The square of a halfturn is a *nonidentity* translation.
- (d) $x' = (\cos r)x + (\sin r)y$ and $y' = (\sin r)x (\cos r)y$ are equations for a rotation.

[2,2,2,2]

Question 2.

- (a) Define the terms involutary isometry, conjugate of an isometry, and dilatation.
- (b) What is the *conjugate* of a translation (by a given isometry)? Make a clear statement and then prove it.

[4,9]

Question 3. PROVE or DISPROVE :

- (a) The square of a glide reflection is a translation.
- (b) Involutory rotations form a group.

[8,8]

Question 4. Consider the points

$$A = (1, 2)$$
 and $B = (2, -1)$

and the line \mathcal{L} with equation

$$x - 3y = 0.$$

- (a) Write the equations for the reflection $\sigma_{\mathcal{L}}$.
- (b) Find the image of the point A under the reflection $\sigma_{\mathcal{L}}$.
- (c) Write the equations for the translation $\tau_{A,B}^{-1}$.
- (d) Determine the equations for the isometry $\rho_{B,-90}\rho_{A,90}$.
- (e) Find the equations of all four isometries sending the segment \overline{OA} onto the segment \overline{OB} , where O = (0,0).

(HINT: Use the general equations for an isometry.)

[2,1,1,6,8]