RHODES UNIVERSITY DEPARTMENT of MATHEMATICS (Pure & Applied) CLASS TEST : SEPTEMBER 2011

MATHEMATICS & APPLIED MATHEMATICS II MAM 202 (GEOMETRY)

AVAILABLE MARKS : 52 FULL MARKS : 50 DURATION : 1 HOUR

NB : All questions may be attempted.

Question 1. TRUE or FALSE ?

- (a) A transformation is necessarily a collineation.
- (b) $\sigma_A \sigma_B \sigma_C = \sigma_B \sigma_C \sigma_A$ for points A, B, C.
- (c) $\sigma_{\mathcal{L}} = \sigma_P^{-1}$ if point *P* is on line \mathcal{L} .
- (d) An isometry that fixes a point is an involution.

[2,2,2,2]

Question 2.

- (a) Define the terms betweenness, dilatation, isometry, and involution.
- (b) Prove ONLY ONE of the following statements :
 - Any translation is a dilatation.
 - Every isometry preserves betweenness and segments.

[4,8]

Question 3. PROVE or DISPROVE :

- (a) $\sigma_A \sigma_M = \sigma_M \sigma_B$ if and only if M is the midpoint of A and B.
- (b) The set of all involutions forms a group.

[8,8]

Question 4. Consider the points

$$A = (0, -1), \quad B = (4, 1)$$

and the line

$$(\mathcal{L}) \quad x + 2y - 1 = 0.$$

- (a) Write the equations for each of the following transformations :
 - i. the translation $\tau_{A,B}$;
 - ii. the product of halfturns $\sigma_A \sigma_M$, where M is the midpoint of A and B.
 - iii. the reflection $\sigma_{\mathcal{L}}$.
 - iv. the rotation $\rho_{B,90}$.
- (b) Find
 - the image of the point B under the translation $\tau_{A,B}$.
 - the preimage of the point A under the rotation $\rho_{B,90}$.
- (c) What happens with the line \mathcal{M} with equation 2x y + 2 = 0under the transformation $\sigma_{\mathcal{L}}$? Justify your answer.
- (d) Determine a line \mathcal{B} such that $\rho_{B,90} = \sigma_{\mathcal{B}} \sigma_{\mathcal{A}}$, where \mathcal{A} is the line with equation x y 3 = 0. Is the line \mathcal{B} unique? If yes, find its equation.

[6,2,4,4]