RHODES UNIVERSITY DEPARTMENT of MATHEMATICS (Pure & Applied) <u>CLASS TEST</u> : APRIL 2012

MATHEMATICS & APPLIED MATHEMATICS II MAM 201 (GEOMETRY)

AVAILABLE MARKS : 52 FULL MARKS : 50 DURATION : 1 HOUR

NB : All questions may be attempted.

Question 1. TRUE or FALSE ?

- (a) The mapping $(x, y) \mapsto (x^2, y)$ is a transformation.
- (b) Every halfturn is an involution.
- (c) If $\tau_{A,B}(C) = D$, then $\tau_{A,B} = \tau_{C,D}$.
- (d) A translation has no fixed points.

[2,2,2,2]

Question 2.

- (a) Define the terms transformation, halfturn, dilatation, and involution.
- (b) Prove ONLY ONE of the following statements :
 - Any halfturn is a dilatation.
 - Every isometry preserves segments.

[4,8]

Question 3. PROVE or DISPROVE :

- (a) If M is the midpoint of A and B, then $\sigma_A \sigma_M = \tau_{A,B}$.
- (b) The set of all rotations about the same point P forms a group.

[8,8]

Question 4. Consider the points

$$A = (1, 2), \quad B = (2, 1)$$

and the lines

$$(\mathcal{L}) \quad x - y = 0, \quad (\mathcal{M}) \quad y - 1 = 0.$$

- (a) Write the equations for each of the following transformations :
 - i. the translation $\tau_{A,B}$.
 - ii. the product of halfturns $\sigma_A \sigma_M$, where M is the midpoint of A and B.
 - iii. the reflection $\sigma_{\mathcal{L}}$.
 - iv. the reflection $\sigma_{\mathcal{M}}$.
 - v. the product of reflections $\sigma_{\mathcal{M}}\sigma_{\mathcal{L}}$.
- (b) Find
 - i. the preimage of the point M under the translation $\tau_{A,B}$.
 - ii. the image of the point A under the reflection $\sigma_{\mathcal{L}}$.
 - iii. the image of the point B under the reflection $\sigma_{\mathcal{M}}$.
 - iv. the image of the line \mathcal{L} under the reflection $\sigma_{\mathcal{M}}$.
- (c) What happens with the point M under the action of the transformation $\sigma_{\mathcal{L}}$. Justify your answer.

[9,5,2]