RHODES UNIVERSITY DEPARTMENT of MATHEMATICS (Pure & Applied) <u>CLASS TEST</u> : APRIL 2013

MATHEMATICS & APPLIED MATHEMATICS II MAM 201 (GEOMETRY)

AVAILABLE MARKS : 52 FULL MARKS : 50 DURATION : 1 HOUR

NB : All questions may be attempted.

Question 1. TRUE or FALSE ?

- (a) The mapping $(x, y) \mapsto (x, x^2 + y)$ is a transformation.
- (b) If τ is a translation and \mathcal{L} is a line, then $\tau(\mathcal{L}) \parallel \mathcal{L}$.
- (c) A halfturn σ_P fixes a line $\mathcal{L} \iff P \in \mathcal{L}$.
- (d) The set of all halfturns is a group.

[2,2,2,2]

Question 2.

- (a) Define the terms parallel, collineation, dilatation and isometry.
- (b) Prove ONLY ONE of the following statements :
 - The set \mathfrak{D} of dilatations forms a group.
 - Every isometry preserves midpoints.

[4,8]

Question 3. PROVE or DISPROVE :

- (a) A product of three halfturns is a halfturn. In particular, if points P, Q, R are not collinear, then $\sigma_R \sigma_Q \sigma_P = \sigma_S$, where $\Box PQRS$ is a parallelogram.
- (b) The set \mathfrak{T} of translations forms a commutative group.

[8,8]

Question 4. Consider the points

$$A = (1,1), \quad B = (2,0), \quad C = (2,2)$$

and the lines

$$\mathcal{L} : y = x, \quad \mathcal{M} : x + y - 2 = 0.$$

- (a) Write the equations for each of the following transformations :
 - i. the translations $\tau_{A,B}^2 = \tau_{A,B}\tau_{A,B}$ and $\tau_{A,C}$. ii. the product of halfturns $\sigma_B \sigma_A$.

 - iii. the reflection $\sigma_{\mathcal{L}}$.
 - iv. the reflection $\sigma_{\mathcal{M}}$.
 - v. the product of reflections $\sigma_{\mathcal{M}}\sigma_{\mathcal{L}}$.
- (b) Find
 - i. the preimage of the point C under the reflection $\sigma_{\mathcal{M}}$.
 - ii. the image of the point A under the product of reflections $\sigma_{\mathcal{M}}\sigma_{\mathcal{L}}.$
 - iii. the image of the line \mathcal{M} under the translation $\tau_{A,C}$.

[10, 6]