RHODES UNIVERSITY

DEPARTMENT of MATHEMATICS (Pure & Applied)

CLASS TEST No. 1: AUGUST 2014

MAM202 (GROUPS and GEOMETRY)

AVAILABLE MARKS : 55 FULL MARKS : 50 DURATION : 1 HOUR

NB: All questions may be attempted.

Question 1. TRUE or FALSE?

- (a) There exist points P, Q, R such that $PR \ge PQ + QR$.
- (b) The *preimage* of any line under a given transformation is a line.
- (c) If transformations α and β are in the group \mathfrak{G} , then $\alpha\beta = \beta\alpha$.
- (d) Every involution is a reflection.

[2,2,2,2]

Question 2.

- (a) Define the terms transformation, collineation, and dilatation.
- (b) Give with justification an example of a transformation which is not a collineation, and an example of a collineation which is not a dilatation.
- (c) Prove ONLY ONE of the following statements:
 - If P, Q, R are distinct points and Q = (1 t)P + tR for some 0 < t < 1, then PQ + QR = PR.
 - If A, B, C are noncollinear points, then $\tau_{A,B} = \tau_{C,D}$ if and only if $\Box CABD$ is a parallelogram.

[3,6,5]

Question 3. PROVE or DISPROVE:

- (a) If Q is the midpoint of P and R, then $\sigma_P \sigma_Q = \tau_{P,R}$.
- (b) Any isometry *preserves* segments and lines.

[8,8]

Question 4. Consider the points

$$A = (1,1), \quad B = (-3,-3)$$

and the line

$$(\mathcal{L}) \quad x + y - 1 = 0.$$

- (a) Write the equations for each of the following transformations:
 - i. the translation $\tau_{A,B}$;
 - ii. the product of halfturns $\sigma_M \sigma_B$, where M is the midpoint of A and B;
 - iii. the reflection $\sigma_{\mathcal{L}}$;
 - iv. the reflection $\sigma_{\mathcal{M}}$, where \mathcal{M} is the line through A and M.
 - v. the product of reflections $\sigma_{\mathcal{M}}\sigma_{\mathcal{L}}$.
- (b) Find the fixed points (if any) and the fixed lines (if any) of the transformation $\sigma_B \sigma_M$.

[9,3]