RHODES UNIVERSITY DEPARTMENT of MATHEMATICS (Pure & Applied) CLASS TEST No. 2 : OCTOBER 2014

MAM202 (GROUPS and GEOMETRY)

AVAILABLE MARKS : 55 FULL MARKS : 50 DURATION : 1 HOUR

NB : All questions may be attempted.

Question 1. TRUE or FALSE ?

- (a) If an isometry fixes three distinct points, then it must be the identity.
- (b) An isometry has a unique fixed point if and only if it is a nonidentity rotation.
- (c) The product of any two rotations is a rotation.
- (d) If $\rho_{\alpha(C),r} = \rho_{C,r}$ for isometry α , then α fixes the point C.

[2,2,2,2]

Question 2.

- (a) Define the terms *odd isometry*, *involutory isometry*, and *glide reflection*.
- (b) Prove the following statements :
 - Given two isometries α and β , the product $\alpha \beta \alpha^{-1}$ is an involution if and only if β is an involution.
 - Translation τ commutes with reflection $\sigma_{\mathcal{C}}$ if and only if τ fixes line \mathcal{C} .

[3, 12]

Question 3. PROVE or DISPROVE :

- (a) The set of all glide reflections forms a group.
- (b) Every translation is a product of two reflections in parallel lines.

[8,8]

Question 4. Consider the lines

- (\mathcal{L}) 2x + y 3 = 0 and (\mathcal{M}) 2x + y 8 = 0.
- (a) Write the equations for each of the following transformations :
 - i. the reflection $\sigma_{\mathcal{L}}$;
 - ii. the reflection $\sigma_{\mathcal{M}}$;
 - iii. the product of reflections $\alpha = \sigma_{\mathcal{M}} \sigma_{\mathcal{L}}$.
- (b) Find the *image* and the *preimage* of the line \mathcal{L} under the transformation α .

[6, 4]

Question 5. Consider the isometry with equations

$$\begin{cases} x' = \frac{1}{5}(-3x + 4y) + 4\\ y' = \frac{1}{5}(-4x - 3y) + 2. \end{cases}$$

Determine all fixed points (if any) of this transformation. Hence deduce the nature of this isometry.

[6]