RHODES UNIVERSITY DEPARTMENT OF MATHEMATICS (Pure & Applied) EXAMINATION : NOVEMBER 2007 MATHEMATICS II/APPLIED MATHEMATICS II PAPER 3

Examiners : Dr C.C. Remsing Dr G. Lubczonok AVAILABLE MARKS : 105 FULL MARKS : 100 DURATION : 2 HOURS

M2.1 - TRANSFORMATION GEOMETRY

NB : All questions may be attempted. All steps must be clearly motivated. Marks will not be awarded if this is not done.

Question 1. [12 marks]

TRUE or FALSE ?

- (a) Any translation is a product of two rotations.
- (b) The set of all halfturns forms a group.
- (c) A nonidentity isometry that fixes a point is a rotation.
- (d) The symmetry group of an isosceles triangle that is not equilateral has three elements .
- (e) A dilation is a product of two strains.
- (f) An equiaffine transformation is either an isometry or a shear.

[2,2,2,2,2,2]

Question 2. [20 marks]

- (a) Define the terms : *odd isometry, dilation, shear,* and *affine transformation.*
- (b) Give general equations for each transformation as in (a).
- (c) Prove ONLY ONE of the following statements :
 - Any dilation is a similarity, but not every similarity is a dilation.
 - Any shear is an equiaffine transformation.
- (d) Define the term *glide reflection* and then prove that the square of a glide reflection is a translation.

[4,4,6,6]

Question 3. [32 marks]

PROVE or DISPROVE :

- (a) The set of *all* rotations forms a *group*.
- (b) Reflections $\sigma_{\mathcal{A}}$ and $\sigma_{\mathcal{B}}$ commute if and only if $\mathcal{A} = \mathcal{B}$.
- (c) For any similarity α , the conjugate of the translation $\tau_{P,Q}$ by α is the translation $\tau_{P',Q'}$, where $P' = \alpha(P)$ and $Q' = \alpha(Q)$.
- (d) An equiaffine similarity is an isometry.

 $[8,\!8,\!8,\!8]$

Page 2 of 4

Question 4. [16 marks]

Prove ONLY TWO of the following statements :

• An even isometry has equations

$$x' = ax - by + h$$

$$y' = bx + ay + k$$

with $a^2 + b^2 = 1$ and, conversely, such equations are those of an even isometry.

- A finite symmetry group is either a cyclic group or a dihedral group.
- A dilatation is a translation or a dilation.
- The affine transformation

$$x' = ax + by + h$$

$$y' = cx + dy + k$$

(with $ad - bc \neq 0$) is a similarity (of ratio r) if and only if

$$a^{2} + c^{2} = b^{2} + d^{2} = r^{2}$$
 and $ab + cd = 0$.

[8, 8]

Question 5. [25 marks]

Consider the points

$$O = (0,0), \quad A = (1,0), \quad B = (2,2) \text{ and } C = (-1,6)$$

and the transformations ρ with equations

$$x' = \frac{1}{\sqrt{5}} (x - 2y) + \frac{1}{\sqrt{5}}$$
$$y' = \frac{1}{\sqrt{5}} (2x + y) + \frac{\sqrt{5} - 1}{2\sqrt{5}}$$

and δ with equations

$$\begin{aligned} x' &= \sqrt{5}x\\ y' &= \sqrt{5}y + \frac{1 - \sqrt{5}}{2} \end{aligned}$$

- (a) Show that ρ is a rotation. Find its centre C and its angle r.
- (b) Show that δ is a stretch about some point *P*. Find the coordinates of *P* and the ratio *s*.
- (c) Write the transformations δ and ρ in matrix form. Hence compute the product $\rho \delta$.
- (d) Let α denote the similarity such that

$$\alpha(O) = A$$
, $\alpha(A) = B$ and $\alpha(B) = C$.

- i. Find its ratio t.
- ii. Determine the equations for α . (HINT : Use the general equations for a similarity.)
- (e) Compare the transformations $\rho \delta$ and α as in (c) and (d), respectively. Hence identify the transformation α .

[8,4,4,7,2]

END OF THE EXAMINATION PAPER

Page 4 of 4