RHODES UNIVERSITY DEPARTMENT OF MATHEMATICS (Pure & Applied) EXAMINATION : NOVEMBER 2009 MATHEMATICS II

Examiners : Dr C.C. Remsing Dr G. Lubczonok AVAILABLE MARKS : 110 FULL MARKS : 100 DURATION : 2 HOURS

M2.1 - TRANSFORMATION GEOMETRY

NB : All questions may be attempted. All steps must be clearly motivated. Marks will not be awarded if this is not done.

Question 1. [12 marks]

TRUE or FALSE ?

- (a) Two parallel lines are mapped by a given isometry into two parallel lines.
- (b) Every reflection is a product of two rotations.
- (c) An even isometry that does not fix a point is a translation.
- (d) The symmetry group of a square has exactly four elements.
- (e) A dilatation that is not a translation must have a fixed point.
- (f) Any similarity is a collineation.

[2,2,2,2,2,2]

Question 2. [22 marks]

- (a) Define carefully the terms : *collineation*, *halfturn*, *stretch rotation*, and *dilatation*.
- (b) Prove the following two statements :
 - The product of two reflections in parallel lines is a translation.
 - A rotation about the origin has equations

$$x' = (\cos r)x - (\sin r)y$$

$$y' = (\sin r)x + (\cos r)y.$$

(c) State clearly the CLASSIFICATION THEOREM FOR SIMILARITIES.

[4, 8, 8, 2]

Question 3. [32 marks]

PROVE or DISPROVE :

- (a) $\sigma_A \sigma_B = \sigma_B \sigma_C$ if and only if B is the *midpoint* of A and C.
- (b) The set of all reflections and glide reflections forms a group.
- (c) If α is an *even* isometry, then

$$\alpha \,\rho_{C,r} \,\alpha^{-1} = \rho_{\alpha(C),r}.$$

(d) Halfturns σ_A and σ_B commute if and only if A = B.

[8,8,8,8]

Question 4. [16 marks]

Prove ONLY TWO of the following statements :

- A product of four reflections is a product of two reflections.
- A rotation of r° followed by a rotation of s° is a rotation of (r+s) unless $(r+s)^{\circ} = 0^{\circ}$, in which case the product is a translation.
- A similarity preserves betweenness, midpoints and segments.
- A dilatation is a translation or a dilation.

[8,8]

Question 5. [28 marks]

Consider the points

$$A = (2, 1), \quad B = (2, -2), \quad C = (-2, 3), \quad D = (4, 3)$$

and the line \mathcal{L} with equation

$$x + 3y = 0.$$

- (a) Write the equations for the following transformations :
 - i. the translation $\tau_{A,B}^{-1}$;
 - ii. the rotation $\rho_{B,-90}$;
 - iii. the reflection $\sigma_{\mathcal{L}}$;
 - iv. the dilation $\delta_{A,-3}$.
- (b) How many similarities are there sending the segment \overline{AB} onto the segment \overline{CD} ? Justify your claim.
- (c) Find the equations of the unique direct similarity such that $A \mapsto C$ and $B \mapsto D$.
- (d) Find the equations of the unique opposite similarity such that $A \mapsto D$ and $B \mapsto C$.

[8,4,8,8]

END OF THE EXAMINATION PAPER

Page 3 of 3