RHODES UNIVERSITY DEPARTMENT OF MATHEMATICS (Pure & Applied)

EXAMINATION: MAY 2010

MATHEMATICS II

Examiners : Dr C.C. Remsing AVAILABLE MARKS : 110

Dr G. Lubczonok FULL MARKS : 100 DURATION : 2 HOURS

M2.1 - TRANSFORMATION GEOMETRY

NB : All questions may be attempted. All steps must be clearly motivated. Marks will not be awarded if this is not done.

Question 1. [12 marks]

TRUE or FALSE?

- (a) For any three points P, Q and R, PR = PQ + QR.
- (b) The image of any line under a given collineation is a line.
- (c) Every isometry is a product of three reflections.
- (d) The product of any two rotations is a rotation.
- (e) The symmetry group of a square has *exactly* four elements.
- (f) A dilatation that is not a translation *must* have a fixed point.

[2,2,2,2,2,2]

Question 2. [22 marks]

- (a) Define carefully the terms: involutive transformation, halfturn, stretch reflection, and dilatation.
- (b) Prove the following two statements:
 - The product of two reflections in *intersecting* lines is a rotation.
 - An *odd isometry* has equations

$$x' = ax + by + h$$

$$y' = bx - ay + k$$

where $a^2 + b^2 = 1$.

(c) State clearly the Classification Theorem for Isometries.

[4,8,8,2]

Question 3. [32 marks]

PROVE or DISPROVE:

- (a) $\sigma_A \sigma_B = \sigma_B \sigma_C$ if and only if B is the midpoint of A and C.
- (b) The set of all dilations forms a group.
- (c) For any $r \neq 0$ (and some point C)

$$\delta_{B,r} \, \delta_{A,\frac{1}{r}} = \tau_{A,C}.$$

(d) Reflections $\sigma_{\mathcal{A}}$ and $\sigma_{\mathcal{B}}$ commute if and only if $\mathcal{A} = \mathcal{B}$.

[8,8,8,8]

Question 4. [16 marks]

Prove ONLY TWO of the following statements:

- If α is an even isometry, then $\alpha \rho_{C,r} \alpha^{-1} = \rho_{\alpha(C),r}$.
- The square of a glide reflection is a translation.
- A finite symmetry group is *either* a cyclic group *or* a dihedral group.
- Any dilation is a dilatation but not every dilatation is a dilation.

[8,8]

Question 5. [28 marks]

Consider the points

$$A = (-2, -1), \quad B = (0, 3), \quad C = (2, 1)$$

and the line \mathcal{L} with equation

$$2x - y + 3 = 0.$$

- (a) Write the equations for the following transformations:
 - i. the translation $\tau_{A,B}^2$;
 - ii. the halfturn σ_B ;
 - iii. the rotation $\rho_{C,r}$;
 - iv. the reflection $\sigma_{\mathcal{L}}$;
 - v. the glide-reflection $\sigma_{\mathcal{L}}\sigma_{C}$;
 - vi. the dilation $\delta_{A,-3}$.
- (b) Find the axis of the glide-reflection $\gamma = \sigma_{\mathcal{L}} \sigma_{\mathcal{C}}$.
- (c) How many similarities are there sending the segment \overline{AB} onto the segment \overline{BC} ? Justify your claim.
- (d) Find the equations of the unique direct similarity (as in (c)) such that $A \mapsto B$ and $B \mapsto C$.
- (e) Find all dilatations taking the circle with equation $x^2 + y^2 = 1$ to the circle with equation $x^2 + (y-2)^2 = 4$.

[8,4,4,8,4]

END OF THE EXAMINATION PAPER