RHODES UNIVERSITY DEPARTMENT OF MATHEMATICS (Pure & Applied) EXAMINATION : NOVEMBER 2014

MATHEMATICS & APPLIED MATHEMATICS II

Paper 2

Examiners : Dr C.C. Remsing Dr A.L. Pinchuck AVAILABLE MARKS : 110 FULL MARKS : 100 DURATION : 3 HOURS

MAM 202 - GROUPS AND GEOMETRY

NB : All questions may be attempted. All steps must be clearly motivated. Marks will not be awarded if this is not done.

Question 1. [16 marks]

TRUE or FALSE ?

- (a) For any three points P, Q and $R, PR \ge PQ + QR$.
- (b) Every transformation is a collineation.
- (c) Every reflection is an involution.
- (d) If α and β are isometries and $\alpha^2 = \beta^2$, then $\alpha = \beta$ or $\alpha = \beta^{-1}$.
- (e) The symmetry group of a square has *exactly* four elements.
- (f) Any dilation is a dilatation.
- (g) A similarity with two fixed points is an isometry.
- (h) The opposite similarities form a group.

[2,2,2,2,2,2,2,2]

Page 1 of 3

Question 2. [28 marks]

- (a) Define the terms : *involutive transformation, odd isometry, stretch reflection,* and *dilatation.*
- (b) Prove ONLY THREE of the following statements :
 - A halfturn is an involutory dilatation.
 - If lines \mathcal{L} and \mathcal{M} are parallel, then the product $\sigma_{\mathcal{M}}\sigma_{\mathcal{L}}$ is the translation through twice the directed distance from \mathcal{L} to \mathcal{M} .
 - A rotation of r° followed by a rotation of s° is a rotation of $(r+s)^{\circ}$ unless $(r+s)^{\circ} = 0^{\circ}$, in which case the product is a translation.
 - Let \mathfrak{G} be a finite group of isometries. Then there is a point C in the plane which is left fixed by every element of \mathfrak{G} .

[4,8,8,8]

Question 3. [32 marks]

PROVE or DISPROVE :

- (a) $\sigma_P \tau_{A,B} \sigma_P = \tau_{C,D}$, where $C = \sigma_P(A)$ and $D = \sigma_P(B)$.
- (b) The square of a glide reflection is a translation.
- (c) The set of all dilations forms a group.
- (d) Dilatations $\delta_{P,r}$ and $\tau_{P,Q}$ never commute if $P \neq Q$.

[8,8,8,8]

Question 4. [6 marks]

Find a glide reflection γ such that $\gamma^2 = \tau_{A,B}$, where A = (1,1) and B = (2,2). Is the solution unique? Justify your answer.

[6]

Page 2 of 3

Question 5. [28 marks]

Consider the points

$$A = (2,1), \quad B = (2,-2), \quad C = (-2,3), \quad D = (4,3)$$

and the line \mathcal{L} with equation

$$x - y + 2 = 0.$$

- (a) Write the equations for the following transformations :
 - i. the translation $\tau^2_{A,B}$;
 - ii. the halfturn σ_B ;
 - iii. the rotation $\rho_{C,r}$;
 - iv. the reflection $\sigma_{\mathcal{L}}$;
 - v. the glide-reflection $\sigma_{\mathcal{L}}\sigma_C$;
 - vi. the dilation $\delta_{A,-2}$.
- (b) How many similarities are there sending the segment \overline{AB} onto the segment \overline{BC} ? Justify your claim.
- (c) Find the equations of the unique *direct similarity* (as in (b)) such that $A \mapsto C$ and $B \mapsto D$.
- (d) Find the equations of the unique opposite similarity (as in (b)) such that $A \mapsto D$ and $B \mapsto C$.

[8,4,8,8]

END OF THE EXAMINATION PAPER