RHODES UNIVERSITY DEPARTMENT of MATHEMATICS (Pure & Applied) CLASS TEST No. 2: MAY 2010

AM3.4 (DIFFERENTIAL GEOMETRY)

AVAILABLE MARKS : 54 FULL MARKS : 50 DURATION : 1 HOUR

NB: All questions may be attempted.

Question 1.

(a) Define the terms *principal curvature* and *principal vector* (of a smooth patch) and *normal curvature* (of a smooth curve). Hence, calculate the principal curvatures of the circular cylinder

$$\sigma(u, v) = (\cos u, \sin u, v)$$
.

- (b) Let γ be a curve on a surface patch σ , and let κ_1 and κ_2 be the principal curvatures of σ .
 - i. Give a formula for the normal curvature of γ in terms of κ_1 and κ_2 .
 - ii. Hence, use this formula to prove that the principal curvatures (at a point of a surface) are the maximum and the minimum values of the normal curvature of all curves on the surface that pass through that point.
- (c) Compute the normal curvature of the circle

$$\gamma(t) = (\cos t, \sin t, 1)$$

on the elliptic paraboloid

$$\sigma(u, v) = (u, v, u^2 + v^2).$$

[8,9,10]

Question 2.

(a) Define the terms $gaussian\ curvature$ and $mean\ curvature$ (of a surface patch). Hence, calculate the gaussian and mean curvatures of the surface

$$\sigma(u,v) = (u+v, u-v, uv).$$

(b) Let κ_1 and κ_2 be the principal curvatures of a surface patch σ , and suppose that $|\kappa_1|, |\kappa_2| \leq C$. Let σ^{λ} be the corresponding parallel surface of σ , where $|\lambda| < \frac{1}{C}$. Prove that the principal curvatures of σ^{λ} are

$$\frac{\kappa_1}{1 - \lambda \kappa_1}$$
 and $\frac{\kappa_2}{1 - \lambda \kappa_2}$.

Hence, derive the gaussian and mean curvatures of σ^{λ} .

(c) Show that if σ is a surface patch with constant non-zero mean curvature H, then for $\lambda = \frac{1}{2H}$, the parallel surface σ^{λ} has constant gaussian curvature $4H^2$.

[12,10,5]